1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/ipc/chromium/src/base/message_loop.h Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,569 @@ 1.4 +// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. 1.5 +// Use of this source code is governed by a BSD-style license that can be 1.6 +// found in the LICENSE file. 1.7 + 1.8 +#ifndef BASE_MESSAGE_LOOP_H_ 1.9 +#define BASE_MESSAGE_LOOP_H_ 1.10 + 1.11 +#include <deque> 1.12 +#include <queue> 1.13 +#include <string> 1.14 +#include <vector> 1.15 + 1.16 +#include <map> 1.17 +#include "base/lock.h" 1.18 +#include "base/message_pump.h" 1.19 +#include "base/observer_list.h" 1.20 +#include "base/ref_counted.h" 1.21 +#include "base/scoped_ptr.h" 1.22 +#include "base/task.h" 1.23 +#include "base/timer.h" 1.24 + 1.25 +#if defined(OS_WIN) 1.26 +// We need this to declare base::MessagePumpWin::Dispatcher, which we should 1.27 +// really just eliminate. 1.28 +#include "base/message_pump_win.h" 1.29 +#elif defined(OS_POSIX) 1.30 +#include "base/message_pump_libevent.h" 1.31 +#endif 1.32 + 1.33 +namespace mozilla { 1.34 +namespace ipc { 1.35 + 1.36 +class DoWorkRunnable; 1.37 + 1.38 +} /* namespace ipc */ 1.39 +} /* namespace mozilla */ 1.40 + 1.41 +// A MessageLoop is used to process events for a particular thread. There is 1.42 +// at most one MessageLoop instance per thread. 1.43 +// 1.44 +// Events include at a minimum Task instances submitted to PostTask or those 1.45 +// managed by TimerManager. Depending on the type of message pump used by the 1.46 +// MessageLoop other events such as UI messages may be processed. On Windows 1.47 +// APC calls (as time permits) and signals sent to a registered set of HANDLEs 1.48 +// may also be processed. 1.49 +// 1.50 +// NOTE: Unless otherwise specified, a MessageLoop's methods may only be called 1.51 +// on the thread where the MessageLoop's Run method executes. 1.52 +// 1.53 +// NOTE: MessageLoop has task reentrancy protection. This means that if a 1.54 +// task is being processed, a second task cannot start until the first task is 1.55 +// finished. Reentrancy can happen when processing a task, and an inner 1.56 +// message pump is created. That inner pump then processes native messages 1.57 +// which could implicitly start an inner task. Inner message pumps are created 1.58 +// with dialogs (DialogBox), common dialogs (GetOpenFileName), OLE functions 1.59 +// (DoDragDrop), printer functions (StartDoc) and *many* others. 1.60 +// 1.61 +// Sample workaround when inner task processing is needed: 1.62 +// bool old_state = MessageLoop::current()->NestableTasksAllowed(); 1.63 +// MessageLoop::current()->SetNestableTasksAllowed(true); 1.64 +// HRESULT hr = DoDragDrop(...); // Implicitly runs a modal message loop here. 1.65 +// MessageLoop::current()->SetNestableTasksAllowed(old_state); 1.66 +// // Process hr (the result returned by DoDragDrop(). 1.67 +// 1.68 +// Please be SURE your task is reentrant (nestable) and all global variables 1.69 +// are stable and accessible before calling SetNestableTasksAllowed(true). 1.70 +// 1.71 +class MessageLoop : public base::MessagePump::Delegate { 1.72 + 1.73 + friend class mozilla::ipc::DoWorkRunnable; 1.74 + 1.75 +public: 1.76 + // A DestructionObserver is notified when the current MessageLoop is being 1.77 + // destroyed. These obsevers are notified prior to MessageLoop::current() 1.78 + // being changed to return NULL. This gives interested parties the chance to 1.79 + // do final cleanup that depends on the MessageLoop. 1.80 + // 1.81 + // NOTE: Any tasks posted to the MessageLoop during this notification will 1.82 + // not be run. Instead, they will be deleted. 1.83 + // 1.84 + class DestructionObserver { 1.85 + public: 1.86 + virtual ~DestructionObserver() {} 1.87 + virtual void WillDestroyCurrentMessageLoop() = 0; 1.88 + }; 1.89 + 1.90 + // Add a DestructionObserver, which will start receiving notifications 1.91 + // immediately. 1.92 + void AddDestructionObserver(DestructionObserver* destruction_observer); 1.93 + 1.94 + // Remove a DestructionObserver. It is safe to call this method while a 1.95 + // DestructionObserver is receiving a notification callback. 1.96 + void RemoveDestructionObserver(DestructionObserver* destruction_observer); 1.97 + 1.98 + // The "PostTask" family of methods call the task's Run method asynchronously 1.99 + // from within a message loop at some point in the future. 1.100 + // 1.101 + // With the PostTask variant, tasks are invoked in FIFO order, inter-mixed 1.102 + // with normal UI or IO event processing. With the PostDelayedTask variant, 1.103 + // tasks are called after at least approximately 'delay_ms' have elapsed. 1.104 + // 1.105 + // The NonNestable variants work similarly except that they promise never to 1.106 + // dispatch the task from a nested invocation of MessageLoop::Run. Instead, 1.107 + // such tasks get deferred until the top-most MessageLoop::Run is executing. 1.108 + // 1.109 + // The MessageLoop takes ownership of the Task, and deletes it after it has 1.110 + // been Run(). 1.111 + // 1.112 + // NOTE: These methods may be called on any thread. The Task will be invoked 1.113 + // on the thread that executes MessageLoop::Run(). 1.114 + 1.115 + void PostTask( 1.116 + const tracked_objects::Location& from_here, Task* task); 1.117 + 1.118 + void PostDelayedTask( 1.119 + const tracked_objects::Location& from_here, Task* task, int delay_ms); 1.120 + 1.121 + void PostNonNestableTask( 1.122 + const tracked_objects::Location& from_here, Task* task); 1.123 + 1.124 + void PostNonNestableDelayedTask( 1.125 + const tracked_objects::Location& from_here, Task* task, int delay_ms); 1.126 + 1.127 + // PostIdleTask is not thread safe and should be called on this thread 1.128 + void PostIdleTask( 1.129 + const tracked_objects::Location& from_here, Task* task); 1.130 + 1.131 + // A variant on PostTask that deletes the given object. This is useful 1.132 + // if the object needs to live until the next run of the MessageLoop (for 1.133 + // example, deleting a RenderProcessHost from within an IPC callback is not 1.134 + // good). 1.135 + // 1.136 + // NOTE: This method may be called on any thread. The object will be deleted 1.137 + // on the thread that executes MessageLoop::Run(). If this is not the same 1.138 + // as the thread that calls PostDelayedTask(FROM_HERE, ), then T MUST inherit 1.139 + // from RefCountedThreadSafe<T>! 1.140 + template <class T> 1.141 + void DeleteSoon(const tracked_objects::Location& from_here, T* object) { 1.142 + PostNonNestableTask(from_here, new DeleteTask<T>(object)); 1.143 + } 1.144 + 1.145 + // A variant on PostTask that releases the given reference counted object 1.146 + // (by calling its Release method). This is useful if the object needs to 1.147 + // live until the next run of the MessageLoop, or if the object needs to be 1.148 + // released on a particular thread. 1.149 + // 1.150 + // NOTE: This method may be called on any thread. The object will be 1.151 + // released (and thus possibly deleted) on the thread that executes 1.152 + // MessageLoop::Run(). If this is not the same as the thread that calls 1.153 + // PostDelayedTask(FROM_HERE, ), then T MUST inherit from 1.154 + // RefCountedThreadSafe<T>! 1.155 + template <class T> 1.156 + void ReleaseSoon(const tracked_objects::Location& from_here, T* object) { 1.157 + PostNonNestableTask(from_here, new ReleaseTask<T>(object)); 1.158 + } 1.159 + 1.160 + // Run the message loop. 1.161 + void Run(); 1.162 + 1.163 + // Process all pending tasks, windows messages, etc., but don't wait/sleep. 1.164 + // Return as soon as all items that can be run are taken care of. 1.165 + void RunAllPending(); 1.166 + 1.167 + // Signals the Run method to return after it is done processing all pending 1.168 + // messages. This method may only be called on the same thread that called 1.169 + // Run, and Run must still be on the call stack. 1.170 + // 1.171 + // Use QuitTask if you need to Quit another thread's MessageLoop, but note 1.172 + // that doing so is fairly dangerous if the target thread makes nested calls 1.173 + // to MessageLoop::Run. The problem being that you won't know which nested 1.174 + // run loop you are quiting, so be careful! 1.175 + // 1.176 + void Quit(); 1.177 + 1.178 + // Invokes Quit on the current MessageLoop when run. Useful to schedule an 1.179 + // arbitrary MessageLoop to Quit. 1.180 + class QuitTask : public Task { 1.181 + public: 1.182 + virtual void Run() { 1.183 + MessageLoop::current()->Quit(); 1.184 + } 1.185 + }; 1.186 + 1.187 + // A MessageLoop has a particular type, which indicates the set of 1.188 + // asynchronous events it may process in addition to tasks and timers. 1.189 + // 1.190 + // TYPE_DEFAULT 1.191 + // This type of ML only supports tasks and timers. 1.192 + // 1.193 + // TYPE_UI 1.194 + // This type of ML also supports native UI events (e.g., Windows messages). 1.195 + // See also MessageLoopForUI. 1.196 + // 1.197 + // TYPE_IO 1.198 + // This type of ML also supports asynchronous IO. See also 1.199 + // MessageLoopForIO. 1.200 + // 1.201 + // TYPE_MOZILLA_CHILD 1.202 + // This type of ML is used in Mozilla child processes which initialize 1.203 + // XPCOM and use the gecko event loop. 1.204 + // 1.205 + // TYPE_MOZILLA_UI 1.206 + // This type of ML is used in Mozilla parent processes which initialize 1.207 + // XPCOM and use the gecko event loop. 1.208 + // 1.209 + // TYPE_MOZILLA_NONMAINTHREAD 1.210 + // This type of ML is used in Mozilla parent processes which initialize 1.211 + // XPCOM and use the nsThread event loop. 1.212 + // 1.213 + enum Type { 1.214 + TYPE_DEFAULT, 1.215 + TYPE_UI, 1.216 + TYPE_IO, 1.217 + TYPE_MOZILLA_CHILD, 1.218 + TYPE_MOZILLA_UI, 1.219 + TYPE_MOZILLA_NONMAINTHREAD 1.220 + }; 1.221 + 1.222 + // Normally, it is not necessary to instantiate a MessageLoop. Instead, it 1.223 + // is typical to make use of the current thread's MessageLoop instance. 1.224 + explicit MessageLoop(Type type = TYPE_DEFAULT); 1.225 + ~MessageLoop(); 1.226 + 1.227 + // Returns the type passed to the constructor. 1.228 + Type type() const { return type_; } 1.229 + 1.230 + // Unique, non-repeating ID for this message loop. 1.231 + int32_t id() const { return id_; } 1.232 + 1.233 + // Optional call to connect the thread name with this loop. 1.234 + void set_thread_name(const std::string& thread_name) { 1.235 + DCHECK(thread_name_.empty()) << "Should not rename this thread!"; 1.236 + thread_name_ = thread_name; 1.237 + } 1.238 + const std::string& thread_name() const { return thread_name_; } 1.239 + 1.240 + // Returns the MessageLoop object for the current thread, or null if none. 1.241 + static MessageLoop* current(); 1.242 + 1.243 + // Enables or disables the recursive task processing. This happens in the case 1.244 + // of recursive message loops. Some unwanted message loop may occurs when 1.245 + // using common controls or printer functions. By default, recursive task 1.246 + // processing is disabled. 1.247 + // 1.248 + // The specific case where tasks get queued is: 1.249 + // - The thread is running a message loop. 1.250 + // - It receives a task #1 and execute it. 1.251 + // - The task #1 implicitly start a message loop, like a MessageBox in the 1.252 + // unit test. This can also be StartDoc or GetSaveFileName. 1.253 + // - The thread receives a task #2 before or while in this second message 1.254 + // loop. 1.255 + // - With NestableTasksAllowed set to true, the task #2 will run right away. 1.256 + // Otherwise, it will get executed right after task #1 completes at "thread 1.257 + // message loop level". 1.258 + void SetNestableTasksAllowed(bool allowed); 1.259 + void ScheduleWork(); 1.260 + bool NestableTasksAllowed() const; 1.261 + 1.262 + // Enables or disables the restoration during an exception of the unhandled 1.263 + // exception filter that was active when Run() was called. This can happen 1.264 + // if some third party code call SetUnhandledExceptionFilter() and never 1.265 + // restores the previous filter. 1.266 + void set_exception_restoration(bool restore) { 1.267 + exception_restoration_ = restore; 1.268 + } 1.269 + 1.270 +#if defined(OS_WIN) 1.271 + void set_os_modal_loop(bool os_modal_loop) { 1.272 + os_modal_loop_ = os_modal_loop; 1.273 + } 1.274 + 1.275 + bool & os_modal_loop() { 1.276 + return os_modal_loop_; 1.277 + } 1.278 +#endif // OS_WIN 1.279 + 1.280 + // Set the timeouts for background hang monitoring. 1.281 + // A value of 0 indicates there is no timeout. 1.282 + void set_hang_timeouts(uint32_t transient_timeout_ms, 1.283 + uint32_t permanent_timeout_ms) { 1.284 + transient_hang_timeout_ = transient_timeout_ms; 1.285 + permanent_hang_timeout_ = permanent_timeout_ms; 1.286 + } 1.287 + uint32_t transient_hang_timeout() const { 1.288 + return transient_hang_timeout_; 1.289 + } 1.290 + uint32_t permanent_hang_timeout() const { 1.291 + return permanent_hang_timeout_; 1.292 + } 1.293 + 1.294 + //---------------------------------------------------------------------------- 1.295 + protected: 1.296 + struct RunState { 1.297 + // Used to count how many Run() invocations are on the stack. 1.298 + int run_depth; 1.299 + 1.300 + // Used to record that Quit() was called, or that we should quit the pump 1.301 + // once it becomes idle. 1.302 + bool quit_received; 1.303 + 1.304 +#if defined(OS_WIN) 1.305 + base::MessagePumpWin::Dispatcher* dispatcher; 1.306 +#endif 1.307 + }; 1.308 + 1.309 + class AutoRunState : RunState { 1.310 + public: 1.311 + explicit AutoRunState(MessageLoop* loop); 1.312 + ~AutoRunState(); 1.313 + private: 1.314 + MessageLoop* loop_; 1.315 + RunState* previous_state_; 1.316 + }; 1.317 + 1.318 + // This structure is copied around by value. 1.319 + struct PendingTask { 1.320 + Task* task; // The task to run. 1.321 + base::TimeTicks delayed_run_time; // The time when the task should be run. 1.322 + int sequence_num; // Secondary sort key for run time. 1.323 + bool nestable; // OK to dispatch from a nested loop. 1.324 + 1.325 + PendingTask(Task* task, bool nestable) 1.326 + : task(task), sequence_num(0), nestable(nestable) { 1.327 + } 1.328 + 1.329 + // Used to support sorting. 1.330 + bool operator<(const PendingTask& other) const; 1.331 + }; 1.332 + 1.333 + typedef std::queue<PendingTask> TaskQueue; 1.334 + typedef std::priority_queue<PendingTask> DelayedTaskQueue; 1.335 + 1.336 +#if defined(OS_WIN) 1.337 + base::MessagePumpWin* pump_win() { 1.338 + return static_cast<base::MessagePumpWin*>(pump_.get()); 1.339 + } 1.340 +#elif defined(OS_POSIX) 1.341 + base::MessagePumpLibevent* pump_libevent() { 1.342 + return static_cast<base::MessagePumpLibevent*>(pump_.get()); 1.343 + } 1.344 +#endif 1.345 + 1.346 + // A function to encapsulate all the exception handling capability in the 1.347 + // stacks around the running of a main message loop. It will run the message 1.348 + // loop in a SEH try block or not depending on the set_SEH_restoration() 1.349 + // flag. 1.350 + void RunHandler(); 1.351 + 1.352 + // A surrounding stack frame around the running of the message loop that 1.353 + // supports all saving and restoring of state, as is needed for any/all (ugly) 1.354 + // recursive calls. 1.355 + void RunInternal(); 1.356 + 1.357 + // Called to process any delayed non-nestable tasks. 1.358 + bool ProcessNextDelayedNonNestableTask(); 1.359 + 1.360 + //---------------------------------------------------------------------------- 1.361 + // Run a work_queue_ task or new_task, and delete it (if it was processed by 1.362 + // PostTask). If there are queued tasks, the oldest one is executed and 1.363 + // new_task is queued. new_task is optional and can be NULL. In this NULL 1.364 + // case, the method will run one pending task (if any exist). Returns true if 1.365 + // it executes a task. Queued tasks accumulate only when there is a 1.366 + // non-nestable task currently processing, in which case the new_task is 1.367 + // appended to the list work_queue_. Such re-entrancy generally happens when 1.368 + // an unrequested message pump (typical of a native dialog) is executing in 1.369 + // the context of a task. 1.370 + bool QueueOrRunTask(Task* new_task); 1.371 + 1.372 + // Runs the specified task and deletes it. 1.373 + void RunTask(Task* task); 1.374 + 1.375 + // Calls RunTask or queues the pending_task on the deferred task list if it 1.376 + // cannot be run right now. Returns true if the task was run. 1.377 + bool DeferOrRunPendingTask(const PendingTask& pending_task); 1.378 + 1.379 + // Adds the pending task to delayed_work_queue_. 1.380 + void AddToDelayedWorkQueue(const PendingTask& pending_task); 1.381 + 1.382 + // Load tasks from the incoming_queue_ into work_queue_ if the latter is 1.383 + // empty. The former requires a lock to access, while the latter is directly 1.384 + // accessible on this thread. 1.385 + void ReloadWorkQueue(); 1.386 + 1.387 + // Delete tasks that haven't run yet without running them. Used in the 1.388 + // destructor to make sure all the task's destructors get called. Returns 1.389 + // true if some work was done. 1.390 + bool DeletePendingTasks(); 1.391 + 1.392 + // Post a task to our incomming queue. 1.393 + void PostTask_Helper(const tracked_objects::Location& from_here, Task* task, 1.394 + int delay_ms, bool nestable); 1.395 + 1.396 + // base::MessagePump::Delegate methods: 1.397 + virtual bool DoWork(); 1.398 + virtual bool DoDelayedWork(base::TimeTicks* next_delayed_work_time); 1.399 + virtual bool DoIdleWork(); 1.400 + 1.401 + Type type_; 1.402 + int32_t id_; 1.403 + 1.404 + // A list of tasks that need to be processed by this instance. Note that 1.405 + // this queue is only accessed (push/pop) by our current thread. 1.406 + TaskQueue work_queue_; 1.407 + 1.408 + // Contains delayed tasks, sorted by their 'delayed_run_time' property. 1.409 + DelayedTaskQueue delayed_work_queue_; 1.410 + 1.411 + // A queue of non-nestable tasks that we had to defer because when it came 1.412 + // time to execute them we were in a nested message loop. They will execute 1.413 + // once we're out of nested message loops. 1.414 + TaskQueue deferred_non_nestable_work_queue_; 1.415 + 1.416 + scoped_refptr<base::MessagePump> pump_; 1.417 + 1.418 + base::ObserverList<DestructionObserver> destruction_observers_; 1.419 + 1.420 + // A recursion block that prevents accidentally running additonal tasks when 1.421 + // insider a (accidentally induced?) nested message pump. 1.422 + bool nestable_tasks_allowed_; 1.423 + 1.424 + bool exception_restoration_; 1.425 + 1.426 + std::string thread_name_; 1.427 + 1.428 + // A null terminated list which creates an incoming_queue of tasks that are 1.429 + // aquired under a mutex for processing on this instance's thread. These tasks 1.430 + // have not yet been sorted out into items for our work_queue_ vs items that 1.431 + // will be handled by the TimerManager. 1.432 + TaskQueue incoming_queue_; 1.433 + // Protect access to incoming_queue_. 1.434 + Lock incoming_queue_lock_; 1.435 + 1.436 + RunState* state_; 1.437 + int run_depth_base_; 1.438 + 1.439 +#if defined(OS_WIN) 1.440 + // Should be set to true before calling Windows APIs like TrackPopupMenu, etc 1.441 + // which enter a modal message loop. 1.442 + bool os_modal_loop_; 1.443 +#endif 1.444 + 1.445 + // Timeout values for hang monitoring 1.446 + uint32_t transient_hang_timeout_; 1.447 + uint32_t permanent_hang_timeout_; 1.448 + 1.449 + // The next sequence number to use for delayed tasks. 1.450 + int next_sequence_num_; 1.451 + 1.452 + DISALLOW_COPY_AND_ASSIGN(MessageLoop); 1.453 +}; 1.454 + 1.455 +//----------------------------------------------------------------------------- 1.456 +// MessageLoopForUI extends MessageLoop with methods that are particular to a 1.457 +// MessageLoop instantiated with TYPE_UI. 1.458 +// 1.459 +// This class is typically used like so: 1.460 +// MessageLoopForUI::current()->...call some method... 1.461 +// 1.462 +class MessageLoopForUI : public MessageLoop { 1.463 + public: 1.464 + MessageLoopForUI(Type type=TYPE_UI) : MessageLoop(type) { 1.465 + } 1.466 + 1.467 + // Returns the MessageLoopForUI of the current thread. 1.468 + static MessageLoopForUI* current() { 1.469 + MessageLoop* loop = MessageLoop::current(); 1.470 + if (!loop) 1.471 + return NULL; 1.472 + Type type = loop->type(); 1.473 + DCHECK(type == MessageLoop::TYPE_UI || 1.474 + type == MessageLoop::TYPE_MOZILLA_UI || 1.475 + type == MessageLoop::TYPE_MOZILLA_CHILD); 1.476 + return static_cast<MessageLoopForUI*>(loop); 1.477 + } 1.478 + 1.479 +#if defined(OS_WIN) 1.480 + typedef base::MessagePumpWin::Dispatcher Dispatcher; 1.481 + typedef base::MessagePumpWin::Observer Observer; 1.482 + 1.483 + // Please see MessagePumpWin for definitions of these methods. 1.484 + void Run(Dispatcher* dispatcher); 1.485 + void AddObserver(Observer* observer); 1.486 + void RemoveObserver(Observer* observer); 1.487 + void WillProcessMessage(const MSG& message); 1.488 + void DidProcessMessage(const MSG& message); 1.489 + void PumpOutPendingPaintMessages(); 1.490 + 1.491 + protected: 1.492 + // TODO(rvargas): Make this platform independent. 1.493 + base::MessagePumpForUI* pump_ui() { 1.494 + return static_cast<base::MessagePumpForUI*>(pump_.get()); 1.495 + } 1.496 +#endif // defined(OS_WIN) 1.497 +}; 1.498 + 1.499 +// Do not add any member variables to MessageLoopForUI! This is important b/c 1.500 +// MessageLoopForUI is often allocated via MessageLoop(TYPE_UI). Any extra 1.501 +// data that you need should be stored on the MessageLoop's pump_ instance. 1.502 +COMPILE_ASSERT(sizeof(MessageLoop) == sizeof(MessageLoopForUI), 1.503 + MessageLoopForUI_should_not_have_extra_member_variables); 1.504 + 1.505 +//----------------------------------------------------------------------------- 1.506 +// MessageLoopForIO extends MessageLoop with methods that are particular to a 1.507 +// MessageLoop instantiated with TYPE_IO. 1.508 +// 1.509 +// This class is typically used like so: 1.510 +// MessageLoopForIO::current()->...call some method... 1.511 +// 1.512 +class MessageLoopForIO : public MessageLoop { 1.513 + public: 1.514 + MessageLoopForIO() : MessageLoop(TYPE_IO) { 1.515 + } 1.516 + 1.517 + // Returns the MessageLoopForIO of the current thread. 1.518 + static MessageLoopForIO* current() { 1.519 + MessageLoop* loop = MessageLoop::current(); 1.520 + DCHECK_EQ(MessageLoop::TYPE_IO, loop->type()); 1.521 + return static_cast<MessageLoopForIO*>(loop); 1.522 + } 1.523 + 1.524 +#if defined(OS_WIN) 1.525 + typedef base::MessagePumpForIO::IOHandler IOHandler; 1.526 + typedef base::MessagePumpForIO::IOContext IOContext; 1.527 + 1.528 + // Please see MessagePumpWin for definitions of these methods. 1.529 + void RegisterIOHandler(HANDLE file_handle, IOHandler* handler); 1.530 + bool WaitForIOCompletion(DWORD timeout, IOHandler* filter); 1.531 + 1.532 + protected: 1.533 + // TODO(rvargas): Make this platform independent. 1.534 + base::MessagePumpForIO* pump_io() { 1.535 + return static_cast<base::MessagePumpForIO*>(pump_.get()); 1.536 + } 1.537 + 1.538 +#elif defined(OS_POSIX) 1.539 + typedef base::MessagePumpLibevent::Watcher Watcher; 1.540 + typedef base::MessagePumpLibevent::FileDescriptorWatcher 1.541 + FileDescriptorWatcher; 1.542 + typedef base::LineWatcher LineWatcher; 1.543 + 1.544 + enum Mode { 1.545 + WATCH_READ = base::MessagePumpLibevent::WATCH_READ, 1.546 + WATCH_WRITE = base::MessagePumpLibevent::WATCH_WRITE, 1.547 + WATCH_READ_WRITE = base::MessagePumpLibevent::WATCH_READ_WRITE 1.548 + }; 1.549 + 1.550 + // Please see MessagePumpLibevent for definition. 1.551 + bool WatchFileDescriptor(int fd, 1.552 + bool persistent, 1.553 + Mode mode, 1.554 + FileDescriptorWatcher *controller, 1.555 + Watcher *delegate); 1.556 + 1.557 + typedef base::MessagePumpLibevent::SignalEvent SignalEvent; 1.558 + typedef base::MessagePumpLibevent::SignalWatcher SignalWatcher; 1.559 + bool CatchSignal(int sig, 1.560 + SignalEvent* sigevent, 1.561 + SignalWatcher* delegate); 1.562 + 1.563 +#endif // defined(OS_POSIX) 1.564 +}; 1.565 + 1.566 +// Do not add any member variables to MessageLoopForIO! This is important b/c 1.567 +// MessageLoopForIO is often allocated via MessageLoop(TYPE_IO). Any extra 1.568 +// data that you need should be stored on the MessageLoop's pump_ instance. 1.569 +COMPILE_ASSERT(sizeof(MessageLoop) == sizeof(MessageLoopForIO), 1.570 + MessageLoopForIO_should_not_have_extra_member_variables); 1.571 + 1.572 +#endif // BASE_MESSAGE_LOOP_H_