ipc/chromium/src/base/message_loop.h

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
     2 // Use of this source code is governed by a BSD-style license that can be
     3 // found in the LICENSE file.
     5 #ifndef BASE_MESSAGE_LOOP_H_
     6 #define BASE_MESSAGE_LOOP_H_
     8 #include <deque>
     9 #include <queue>
    10 #include <string>
    11 #include <vector>
    13 #include <map>
    14 #include "base/lock.h"
    15 #include "base/message_pump.h"
    16 #include "base/observer_list.h"
    17 #include "base/ref_counted.h"
    18 #include "base/scoped_ptr.h"
    19 #include "base/task.h"
    20 #include "base/timer.h"
    22 #if defined(OS_WIN)
    23 // We need this to declare base::MessagePumpWin::Dispatcher, which we should
    24 // really just eliminate.
    25 #include "base/message_pump_win.h"
    26 #elif defined(OS_POSIX)
    27 #include "base/message_pump_libevent.h"
    28 #endif
    30 namespace mozilla {
    31 namespace ipc {
    33 class DoWorkRunnable;
    35 } /* namespace ipc */
    36 } /* namespace mozilla */
    38 // A MessageLoop is used to process events for a particular thread.  There is
    39 // at most one MessageLoop instance per thread.
    40 //
    41 // Events include at a minimum Task instances submitted to PostTask or those
    42 // managed by TimerManager.  Depending on the type of message pump used by the
    43 // MessageLoop other events such as UI messages may be processed.  On Windows
    44 // APC calls (as time permits) and signals sent to a registered set of HANDLEs
    45 // may also be processed.
    46 //
    47 // NOTE: Unless otherwise specified, a MessageLoop's methods may only be called
    48 // on the thread where the MessageLoop's Run method executes.
    49 //
    50 // NOTE: MessageLoop has task reentrancy protection.  This means that if a
    51 // task is being processed, a second task cannot start until the first task is
    52 // finished.  Reentrancy can happen when processing a task, and an inner
    53 // message pump is created.  That inner pump then processes native messages
    54 // which could implicitly start an inner task.  Inner message pumps are created
    55 // with dialogs (DialogBox), common dialogs (GetOpenFileName), OLE functions
    56 // (DoDragDrop), printer functions (StartDoc) and *many* others.
    57 //
    58 // Sample workaround when inner task processing is needed:
    59 //   bool old_state = MessageLoop::current()->NestableTasksAllowed();
    60 //   MessageLoop::current()->SetNestableTasksAllowed(true);
    61 //   HRESULT hr = DoDragDrop(...); // Implicitly runs a modal message loop here.
    62 //   MessageLoop::current()->SetNestableTasksAllowed(old_state);
    63 //   // Process hr  (the result returned by DoDragDrop().
    64 //
    65 // Please be SURE your task is reentrant (nestable) and all global variables
    66 // are stable and accessible before calling SetNestableTasksAllowed(true).
    67 //
    68 class MessageLoop : public base::MessagePump::Delegate {
    70   friend class mozilla::ipc::DoWorkRunnable;
    72 public:
    73   // A DestructionObserver is notified when the current MessageLoop is being
    74   // destroyed.  These obsevers are notified prior to MessageLoop::current()
    75   // being changed to return NULL.  This gives interested parties the chance to
    76   // do final cleanup that depends on the MessageLoop.
    77   //
    78   // NOTE: Any tasks posted to the MessageLoop during this notification will
    79   // not be run.  Instead, they will be deleted.
    80   //
    81   class DestructionObserver {
    82    public:
    83     virtual ~DestructionObserver() {}
    84     virtual void WillDestroyCurrentMessageLoop() = 0;
    85   };
    87   // Add a DestructionObserver, which will start receiving notifications
    88   // immediately.
    89   void AddDestructionObserver(DestructionObserver* destruction_observer);
    91   // Remove a DestructionObserver.  It is safe to call this method while a
    92   // DestructionObserver is receiving a notification callback.
    93   void RemoveDestructionObserver(DestructionObserver* destruction_observer);
    95   // The "PostTask" family of methods call the task's Run method asynchronously
    96   // from within a message loop at some point in the future.
    97   //
    98   // With the PostTask variant, tasks are invoked in FIFO order, inter-mixed
    99   // with normal UI or IO event processing.  With the PostDelayedTask variant,
   100   // tasks are called after at least approximately 'delay_ms' have elapsed.
   101   //
   102   // The NonNestable variants work similarly except that they promise never to
   103   // dispatch the task from a nested invocation of MessageLoop::Run.  Instead,
   104   // such tasks get deferred until the top-most MessageLoop::Run is executing.
   105   //
   106   // The MessageLoop takes ownership of the Task, and deletes it after it has
   107   // been Run().
   108   //
   109   // NOTE: These methods may be called on any thread.  The Task will be invoked
   110   // on the thread that executes MessageLoop::Run().
   112   void PostTask(
   113       const tracked_objects::Location& from_here, Task* task);
   115   void PostDelayedTask(
   116       const tracked_objects::Location& from_here, Task* task, int delay_ms);
   118   void PostNonNestableTask(
   119       const tracked_objects::Location& from_here, Task* task);
   121   void PostNonNestableDelayedTask(
   122       const tracked_objects::Location& from_here, Task* task, int delay_ms);
   124   // PostIdleTask is not thread safe and should be called on this thread
   125   void PostIdleTask(
   126       const tracked_objects::Location& from_here, Task* task);
   128   // A variant on PostTask that deletes the given object.  This is useful
   129   // if the object needs to live until the next run of the MessageLoop (for
   130   // example, deleting a RenderProcessHost from within an IPC callback is not
   131   // good).
   132   //
   133   // NOTE: This method may be called on any thread.  The object will be deleted
   134   // on the thread that executes MessageLoop::Run().  If this is not the same
   135   // as the thread that calls PostDelayedTask(FROM_HERE, ), then T MUST inherit
   136   // from RefCountedThreadSafe<T>!
   137   template <class T>
   138   void DeleteSoon(const tracked_objects::Location& from_here, T* object) {
   139     PostNonNestableTask(from_here, new DeleteTask<T>(object));
   140   }
   142   // A variant on PostTask that releases the given reference counted object
   143   // (by calling its Release method).  This is useful if the object needs to
   144   // live until the next run of the MessageLoop, or if the object needs to be
   145   // released on a particular thread.
   146   //
   147   // NOTE: This method may be called on any thread.  The object will be
   148   // released (and thus possibly deleted) on the thread that executes
   149   // MessageLoop::Run().  If this is not the same as the thread that calls
   150   // PostDelayedTask(FROM_HERE, ), then T MUST inherit from
   151   // RefCountedThreadSafe<T>!
   152   template <class T>
   153   void ReleaseSoon(const tracked_objects::Location& from_here, T* object) {
   154     PostNonNestableTask(from_here, new ReleaseTask<T>(object));
   155   }
   157   // Run the message loop.
   158   void Run();
   160   // Process all pending tasks, windows messages, etc., but don't wait/sleep.
   161   // Return as soon as all items that can be run are taken care of.
   162   void RunAllPending();
   164   // Signals the Run method to return after it is done processing all pending
   165   // messages.  This method may only be called on the same thread that called
   166   // Run, and Run must still be on the call stack.
   167   //
   168   // Use QuitTask if you need to Quit another thread's MessageLoop, but note
   169   // that doing so is fairly dangerous if the target thread makes nested calls
   170   // to MessageLoop::Run.  The problem being that you won't know which nested
   171   // run loop you are quiting, so be careful!
   172   //
   173   void Quit();
   175   // Invokes Quit on the current MessageLoop when run.  Useful to schedule an
   176   // arbitrary MessageLoop to Quit.
   177   class QuitTask : public Task {
   178    public:
   179     virtual void Run() {
   180       MessageLoop::current()->Quit();
   181     }
   182   };
   184   // A MessageLoop has a particular type, which indicates the set of
   185   // asynchronous events it may process in addition to tasks and timers.
   186   //
   187   // TYPE_DEFAULT
   188   //   This type of ML only supports tasks and timers.
   189   //
   190   // TYPE_UI
   191   //   This type of ML also supports native UI events (e.g., Windows messages).
   192   //   See also MessageLoopForUI.
   193   //
   194   // TYPE_IO
   195   //   This type of ML also supports asynchronous IO.  See also
   196   //   MessageLoopForIO.
   197   //
   198   // TYPE_MOZILLA_CHILD
   199   //   This type of ML is used in Mozilla child processes which initialize
   200   //   XPCOM and use the gecko event loop.
   201   //
   202   // TYPE_MOZILLA_UI
   203   //   This type of ML is used in Mozilla parent processes which initialize
   204   //   XPCOM and use the gecko event loop.
   205   //
   206   // TYPE_MOZILLA_NONMAINTHREAD
   207   //   This type of ML is used in Mozilla parent processes which initialize
   208   //   XPCOM and use the nsThread event loop.
   209   //
   210   enum Type {
   211     TYPE_DEFAULT,
   212     TYPE_UI,
   213     TYPE_IO,
   214     TYPE_MOZILLA_CHILD,
   215     TYPE_MOZILLA_UI,
   216     TYPE_MOZILLA_NONMAINTHREAD
   217   };
   219   // Normally, it is not necessary to instantiate a MessageLoop.  Instead, it
   220   // is typical to make use of the current thread's MessageLoop instance.
   221   explicit MessageLoop(Type type = TYPE_DEFAULT);
   222   ~MessageLoop();
   224   // Returns the type passed to the constructor.
   225   Type type() const { return type_; }
   227   // Unique, non-repeating ID for this message loop.
   228   int32_t id() const { return id_; }
   230   // Optional call to connect the thread name with this loop.
   231   void set_thread_name(const std::string& thread_name) {
   232     DCHECK(thread_name_.empty()) << "Should not rename this thread!";
   233     thread_name_ = thread_name;
   234   }
   235   const std::string& thread_name() const { return thread_name_; }
   237   // Returns the MessageLoop object for the current thread, or null if none.
   238   static MessageLoop* current();
   240   // Enables or disables the recursive task processing. This happens in the case
   241   // of recursive message loops. Some unwanted message loop may occurs when
   242   // using common controls or printer functions. By default, recursive task
   243   // processing is disabled.
   244   //
   245   // The specific case where tasks get queued is:
   246   // - The thread is running a message loop.
   247   // - It receives a task #1 and execute it.
   248   // - The task #1 implicitly start a message loop, like a MessageBox in the
   249   //   unit test. This can also be StartDoc or GetSaveFileName.
   250   // - The thread receives a task #2 before or while in this second message
   251   //   loop.
   252   // - With NestableTasksAllowed set to true, the task #2 will run right away.
   253   //   Otherwise, it will get executed right after task #1 completes at "thread
   254   //   message loop level".
   255   void SetNestableTasksAllowed(bool allowed);
   256   void ScheduleWork();
   257   bool NestableTasksAllowed() const;
   259   // Enables or disables the restoration during an exception of the unhandled
   260   // exception filter that was active when Run() was called. This can happen
   261   // if some third party code call SetUnhandledExceptionFilter() and never
   262   // restores the previous filter.
   263   void set_exception_restoration(bool restore) {
   264     exception_restoration_ = restore;
   265   }
   267 #if defined(OS_WIN)
   268   void set_os_modal_loop(bool os_modal_loop) {
   269     os_modal_loop_ = os_modal_loop;
   270   }
   272   bool & os_modal_loop() {
   273     return os_modal_loop_;
   274   }
   275 #endif  // OS_WIN
   277   // Set the timeouts for background hang monitoring.
   278   // A value of 0 indicates there is no timeout.
   279   void set_hang_timeouts(uint32_t transient_timeout_ms,
   280                          uint32_t permanent_timeout_ms) {
   281     transient_hang_timeout_ = transient_timeout_ms;
   282     permanent_hang_timeout_ = permanent_timeout_ms;
   283   }
   284   uint32_t transient_hang_timeout() const {
   285     return transient_hang_timeout_;
   286   }
   287   uint32_t permanent_hang_timeout() const {
   288     return permanent_hang_timeout_;
   289   }
   291   //----------------------------------------------------------------------------
   292  protected:
   293   struct RunState {
   294     // Used to count how many Run() invocations are on the stack.
   295     int run_depth;
   297     // Used to record that Quit() was called, or that we should quit the pump
   298     // once it becomes idle.
   299     bool quit_received;
   301 #if defined(OS_WIN)
   302     base::MessagePumpWin::Dispatcher* dispatcher;
   303 #endif
   304   };
   306   class AutoRunState : RunState {
   307    public:
   308     explicit AutoRunState(MessageLoop* loop);
   309     ~AutoRunState();
   310    private:
   311     MessageLoop* loop_;
   312     RunState* previous_state_;
   313   };
   315   // This structure is copied around by value.
   316   struct PendingTask {
   317     Task* task;                        // The task to run.
   318     base::TimeTicks delayed_run_time;  // The time when the task should be run.
   319     int sequence_num;                  // Secondary sort key for run time.
   320     bool nestable;                     // OK to dispatch from a nested loop.
   322     PendingTask(Task* task, bool nestable)
   323         : task(task), sequence_num(0), nestable(nestable) {
   324     }
   326     // Used to support sorting.
   327     bool operator<(const PendingTask& other) const;
   328   };
   330   typedef std::queue<PendingTask> TaskQueue;
   331   typedef std::priority_queue<PendingTask> DelayedTaskQueue;
   333 #if defined(OS_WIN)
   334   base::MessagePumpWin* pump_win() {
   335     return static_cast<base::MessagePumpWin*>(pump_.get());
   336   }
   337 #elif defined(OS_POSIX)
   338   base::MessagePumpLibevent* pump_libevent() {
   339     return static_cast<base::MessagePumpLibevent*>(pump_.get());
   340   }
   341 #endif
   343   // A function to encapsulate all the exception handling capability in the
   344   // stacks around the running of a main message loop.  It will run the message
   345   // loop in a SEH try block or not depending on the set_SEH_restoration()
   346   // flag.
   347   void RunHandler();
   349   // A surrounding stack frame around the running of the message loop that
   350   // supports all saving and restoring of state, as is needed for any/all (ugly)
   351   // recursive calls.
   352   void RunInternal();
   354   // Called to process any delayed non-nestable tasks.
   355   bool ProcessNextDelayedNonNestableTask();
   357   //----------------------------------------------------------------------------
   358   // Run a work_queue_ task or new_task, and delete it (if it was processed by
   359   // PostTask). If there are queued tasks, the oldest one is executed and
   360   // new_task is queued. new_task is optional and can be NULL. In this NULL
   361   // case, the method will run one pending task (if any exist). Returns true if
   362   // it executes a task.  Queued tasks accumulate only when there is a
   363   // non-nestable task currently processing, in which case the new_task is
   364   // appended to the list work_queue_.  Such re-entrancy generally happens when
   365   // an unrequested message pump (typical of a native dialog) is executing in
   366   // the context of a task.
   367   bool QueueOrRunTask(Task* new_task);
   369   // Runs the specified task and deletes it.
   370   void RunTask(Task* task);
   372   // Calls RunTask or queues the pending_task on the deferred task list if it
   373   // cannot be run right now.  Returns true if the task was run.
   374   bool DeferOrRunPendingTask(const PendingTask& pending_task);
   376   // Adds the pending task to delayed_work_queue_.
   377   void AddToDelayedWorkQueue(const PendingTask& pending_task);
   379   // Load tasks from the incoming_queue_ into work_queue_ if the latter is
   380   // empty.  The former requires a lock to access, while the latter is directly
   381   // accessible on this thread.
   382   void ReloadWorkQueue();
   384   // Delete tasks that haven't run yet without running them.  Used in the
   385   // destructor to make sure all the task's destructors get called.  Returns
   386   // true if some work was done.
   387   bool DeletePendingTasks();
   389   // Post a task to our incomming queue.
   390   void PostTask_Helper(const tracked_objects::Location& from_here, Task* task,
   391                        int delay_ms, bool nestable);
   393   // base::MessagePump::Delegate methods:
   394   virtual bool DoWork();
   395   virtual bool DoDelayedWork(base::TimeTicks* next_delayed_work_time);
   396   virtual bool DoIdleWork();
   398   Type type_;
   399   int32_t id_;
   401   // A list of tasks that need to be processed by this instance.  Note that
   402   // this queue is only accessed (push/pop) by our current thread.
   403   TaskQueue work_queue_;
   405   // Contains delayed tasks, sorted by their 'delayed_run_time' property.
   406   DelayedTaskQueue delayed_work_queue_;
   408   // A queue of non-nestable tasks that we had to defer because when it came
   409   // time to execute them we were in a nested message loop.  They will execute
   410   // once we're out of nested message loops.
   411   TaskQueue deferred_non_nestable_work_queue_;
   413   scoped_refptr<base::MessagePump> pump_;
   415   base::ObserverList<DestructionObserver> destruction_observers_;
   417   // A recursion block that prevents accidentally running additonal tasks when
   418   // insider a (accidentally induced?) nested message pump.
   419   bool nestable_tasks_allowed_;
   421   bool exception_restoration_;
   423   std::string thread_name_;
   425   // A null terminated list which creates an incoming_queue of tasks that are
   426   // aquired under a mutex for processing on this instance's thread. These tasks
   427   // have not yet been sorted out into items for our work_queue_ vs items that
   428   // will be handled by the TimerManager.
   429   TaskQueue incoming_queue_;
   430   // Protect access to incoming_queue_.
   431   Lock incoming_queue_lock_;
   433   RunState* state_;
   434   int run_depth_base_;
   436 #if defined(OS_WIN)
   437   // Should be set to true before calling Windows APIs like TrackPopupMenu, etc
   438   // which enter a modal message loop.
   439   bool os_modal_loop_;
   440 #endif
   442   // Timeout values for hang monitoring
   443   uint32_t transient_hang_timeout_;
   444   uint32_t permanent_hang_timeout_;
   446   // The next sequence number to use for delayed tasks.
   447   int next_sequence_num_;
   449   DISALLOW_COPY_AND_ASSIGN(MessageLoop);
   450 };
   452 //-----------------------------------------------------------------------------
   453 // MessageLoopForUI extends MessageLoop with methods that are particular to a
   454 // MessageLoop instantiated with TYPE_UI.
   455 //
   456 // This class is typically used like so:
   457 //   MessageLoopForUI::current()->...call some method...
   458 //
   459 class MessageLoopForUI : public MessageLoop {
   460  public:
   461   MessageLoopForUI(Type type=TYPE_UI) : MessageLoop(type) {
   462   }
   464   // Returns the MessageLoopForUI of the current thread.
   465   static MessageLoopForUI* current() {
   466     MessageLoop* loop = MessageLoop::current();
   467     if (!loop)
   468       return NULL;
   469     Type type = loop->type();
   470     DCHECK(type == MessageLoop::TYPE_UI ||
   471            type == MessageLoop::TYPE_MOZILLA_UI ||
   472            type == MessageLoop::TYPE_MOZILLA_CHILD);
   473     return static_cast<MessageLoopForUI*>(loop);
   474   }
   476 #if defined(OS_WIN)
   477   typedef base::MessagePumpWin::Dispatcher Dispatcher;
   478   typedef base::MessagePumpWin::Observer Observer;
   480   // Please see MessagePumpWin for definitions of these methods.
   481   void Run(Dispatcher* dispatcher);
   482   void AddObserver(Observer* observer);
   483   void RemoveObserver(Observer* observer);
   484   void WillProcessMessage(const MSG& message);
   485   void DidProcessMessage(const MSG& message);
   486   void PumpOutPendingPaintMessages();
   488  protected:
   489   // TODO(rvargas): Make this platform independent.
   490   base::MessagePumpForUI* pump_ui() {
   491     return static_cast<base::MessagePumpForUI*>(pump_.get());
   492   }
   493 #endif  // defined(OS_WIN)
   494 };
   496 // Do not add any member variables to MessageLoopForUI!  This is important b/c
   497 // MessageLoopForUI is often allocated via MessageLoop(TYPE_UI).  Any extra
   498 // data that you need should be stored on the MessageLoop's pump_ instance.
   499 COMPILE_ASSERT(sizeof(MessageLoop) == sizeof(MessageLoopForUI),
   500                MessageLoopForUI_should_not_have_extra_member_variables);
   502 //-----------------------------------------------------------------------------
   503 // MessageLoopForIO extends MessageLoop with methods that are particular to a
   504 // MessageLoop instantiated with TYPE_IO.
   505 //
   506 // This class is typically used like so:
   507 //   MessageLoopForIO::current()->...call some method...
   508 //
   509 class MessageLoopForIO : public MessageLoop {
   510  public:
   511   MessageLoopForIO() : MessageLoop(TYPE_IO) {
   512   }
   514   // Returns the MessageLoopForIO of the current thread.
   515   static MessageLoopForIO* current() {
   516     MessageLoop* loop = MessageLoop::current();
   517     DCHECK_EQ(MessageLoop::TYPE_IO, loop->type());
   518     return static_cast<MessageLoopForIO*>(loop);
   519   }
   521 #if defined(OS_WIN)
   522   typedef base::MessagePumpForIO::IOHandler IOHandler;
   523   typedef base::MessagePumpForIO::IOContext IOContext;
   525   // Please see MessagePumpWin for definitions of these methods.
   526   void RegisterIOHandler(HANDLE file_handle, IOHandler* handler);
   527   bool WaitForIOCompletion(DWORD timeout, IOHandler* filter);
   529  protected:
   530   // TODO(rvargas): Make this platform independent.
   531   base::MessagePumpForIO* pump_io() {
   532     return static_cast<base::MessagePumpForIO*>(pump_.get());
   533   }
   535 #elif defined(OS_POSIX)
   536   typedef base::MessagePumpLibevent::Watcher Watcher;
   537   typedef base::MessagePumpLibevent::FileDescriptorWatcher
   538       FileDescriptorWatcher;
   539   typedef base::LineWatcher LineWatcher;
   541   enum Mode {
   542     WATCH_READ = base::MessagePumpLibevent::WATCH_READ,
   543     WATCH_WRITE = base::MessagePumpLibevent::WATCH_WRITE,
   544     WATCH_READ_WRITE = base::MessagePumpLibevent::WATCH_READ_WRITE
   545   };
   547   // Please see MessagePumpLibevent for definition.
   548   bool WatchFileDescriptor(int fd,
   549                            bool persistent,
   550                            Mode mode,
   551                            FileDescriptorWatcher *controller,
   552                            Watcher *delegate);
   554   typedef base::MessagePumpLibevent::SignalEvent SignalEvent;
   555   typedef base::MessagePumpLibevent::SignalWatcher SignalWatcher;
   556   bool CatchSignal(int sig,
   557                    SignalEvent* sigevent,
   558                    SignalWatcher* delegate);
   560 #endif  // defined(OS_POSIX)
   561 };
   563 // Do not add any member variables to MessageLoopForIO!  This is important b/c
   564 // MessageLoopForIO is often allocated via MessageLoop(TYPE_IO).  Any extra
   565 // data that you need should be stored on the MessageLoop's pump_ instance.
   566 COMPILE_ASSERT(sizeof(MessageLoop) == sizeof(MessageLoopForIO),
   567                MessageLoopForIO_should_not_have_extra_member_variables);
   569 #endif  // BASE_MESSAGE_LOOP_H_

mercurial