ipc/chromium/src/base/message_loop.h

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

michael@0 1 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
michael@0 2 // Use of this source code is governed by a BSD-style license that can be
michael@0 3 // found in the LICENSE file.
michael@0 4
michael@0 5 #ifndef BASE_MESSAGE_LOOP_H_
michael@0 6 #define BASE_MESSAGE_LOOP_H_
michael@0 7
michael@0 8 #include <deque>
michael@0 9 #include <queue>
michael@0 10 #include <string>
michael@0 11 #include <vector>
michael@0 12
michael@0 13 #include <map>
michael@0 14 #include "base/lock.h"
michael@0 15 #include "base/message_pump.h"
michael@0 16 #include "base/observer_list.h"
michael@0 17 #include "base/ref_counted.h"
michael@0 18 #include "base/scoped_ptr.h"
michael@0 19 #include "base/task.h"
michael@0 20 #include "base/timer.h"
michael@0 21
michael@0 22 #if defined(OS_WIN)
michael@0 23 // We need this to declare base::MessagePumpWin::Dispatcher, which we should
michael@0 24 // really just eliminate.
michael@0 25 #include "base/message_pump_win.h"
michael@0 26 #elif defined(OS_POSIX)
michael@0 27 #include "base/message_pump_libevent.h"
michael@0 28 #endif
michael@0 29
michael@0 30 namespace mozilla {
michael@0 31 namespace ipc {
michael@0 32
michael@0 33 class DoWorkRunnable;
michael@0 34
michael@0 35 } /* namespace ipc */
michael@0 36 } /* namespace mozilla */
michael@0 37
michael@0 38 // A MessageLoop is used to process events for a particular thread. There is
michael@0 39 // at most one MessageLoop instance per thread.
michael@0 40 //
michael@0 41 // Events include at a minimum Task instances submitted to PostTask or those
michael@0 42 // managed by TimerManager. Depending on the type of message pump used by the
michael@0 43 // MessageLoop other events such as UI messages may be processed. On Windows
michael@0 44 // APC calls (as time permits) and signals sent to a registered set of HANDLEs
michael@0 45 // may also be processed.
michael@0 46 //
michael@0 47 // NOTE: Unless otherwise specified, a MessageLoop's methods may only be called
michael@0 48 // on the thread where the MessageLoop's Run method executes.
michael@0 49 //
michael@0 50 // NOTE: MessageLoop has task reentrancy protection. This means that if a
michael@0 51 // task is being processed, a second task cannot start until the first task is
michael@0 52 // finished. Reentrancy can happen when processing a task, and an inner
michael@0 53 // message pump is created. That inner pump then processes native messages
michael@0 54 // which could implicitly start an inner task. Inner message pumps are created
michael@0 55 // with dialogs (DialogBox), common dialogs (GetOpenFileName), OLE functions
michael@0 56 // (DoDragDrop), printer functions (StartDoc) and *many* others.
michael@0 57 //
michael@0 58 // Sample workaround when inner task processing is needed:
michael@0 59 // bool old_state = MessageLoop::current()->NestableTasksAllowed();
michael@0 60 // MessageLoop::current()->SetNestableTasksAllowed(true);
michael@0 61 // HRESULT hr = DoDragDrop(...); // Implicitly runs a modal message loop here.
michael@0 62 // MessageLoop::current()->SetNestableTasksAllowed(old_state);
michael@0 63 // // Process hr (the result returned by DoDragDrop().
michael@0 64 //
michael@0 65 // Please be SURE your task is reentrant (nestable) and all global variables
michael@0 66 // are stable and accessible before calling SetNestableTasksAllowed(true).
michael@0 67 //
michael@0 68 class MessageLoop : public base::MessagePump::Delegate {
michael@0 69
michael@0 70 friend class mozilla::ipc::DoWorkRunnable;
michael@0 71
michael@0 72 public:
michael@0 73 // A DestructionObserver is notified when the current MessageLoop is being
michael@0 74 // destroyed. These obsevers are notified prior to MessageLoop::current()
michael@0 75 // being changed to return NULL. This gives interested parties the chance to
michael@0 76 // do final cleanup that depends on the MessageLoop.
michael@0 77 //
michael@0 78 // NOTE: Any tasks posted to the MessageLoop during this notification will
michael@0 79 // not be run. Instead, they will be deleted.
michael@0 80 //
michael@0 81 class DestructionObserver {
michael@0 82 public:
michael@0 83 virtual ~DestructionObserver() {}
michael@0 84 virtual void WillDestroyCurrentMessageLoop() = 0;
michael@0 85 };
michael@0 86
michael@0 87 // Add a DestructionObserver, which will start receiving notifications
michael@0 88 // immediately.
michael@0 89 void AddDestructionObserver(DestructionObserver* destruction_observer);
michael@0 90
michael@0 91 // Remove a DestructionObserver. It is safe to call this method while a
michael@0 92 // DestructionObserver is receiving a notification callback.
michael@0 93 void RemoveDestructionObserver(DestructionObserver* destruction_observer);
michael@0 94
michael@0 95 // The "PostTask" family of methods call the task's Run method asynchronously
michael@0 96 // from within a message loop at some point in the future.
michael@0 97 //
michael@0 98 // With the PostTask variant, tasks are invoked in FIFO order, inter-mixed
michael@0 99 // with normal UI or IO event processing. With the PostDelayedTask variant,
michael@0 100 // tasks are called after at least approximately 'delay_ms' have elapsed.
michael@0 101 //
michael@0 102 // The NonNestable variants work similarly except that they promise never to
michael@0 103 // dispatch the task from a nested invocation of MessageLoop::Run. Instead,
michael@0 104 // such tasks get deferred until the top-most MessageLoop::Run is executing.
michael@0 105 //
michael@0 106 // The MessageLoop takes ownership of the Task, and deletes it after it has
michael@0 107 // been Run().
michael@0 108 //
michael@0 109 // NOTE: These methods may be called on any thread. The Task will be invoked
michael@0 110 // on the thread that executes MessageLoop::Run().
michael@0 111
michael@0 112 void PostTask(
michael@0 113 const tracked_objects::Location& from_here, Task* task);
michael@0 114
michael@0 115 void PostDelayedTask(
michael@0 116 const tracked_objects::Location& from_here, Task* task, int delay_ms);
michael@0 117
michael@0 118 void PostNonNestableTask(
michael@0 119 const tracked_objects::Location& from_here, Task* task);
michael@0 120
michael@0 121 void PostNonNestableDelayedTask(
michael@0 122 const tracked_objects::Location& from_here, Task* task, int delay_ms);
michael@0 123
michael@0 124 // PostIdleTask is not thread safe and should be called on this thread
michael@0 125 void PostIdleTask(
michael@0 126 const tracked_objects::Location& from_here, Task* task);
michael@0 127
michael@0 128 // A variant on PostTask that deletes the given object. This is useful
michael@0 129 // if the object needs to live until the next run of the MessageLoop (for
michael@0 130 // example, deleting a RenderProcessHost from within an IPC callback is not
michael@0 131 // good).
michael@0 132 //
michael@0 133 // NOTE: This method may be called on any thread. The object will be deleted
michael@0 134 // on the thread that executes MessageLoop::Run(). If this is not the same
michael@0 135 // as the thread that calls PostDelayedTask(FROM_HERE, ), then T MUST inherit
michael@0 136 // from RefCountedThreadSafe<T>!
michael@0 137 template <class T>
michael@0 138 void DeleteSoon(const tracked_objects::Location& from_here, T* object) {
michael@0 139 PostNonNestableTask(from_here, new DeleteTask<T>(object));
michael@0 140 }
michael@0 141
michael@0 142 // A variant on PostTask that releases the given reference counted object
michael@0 143 // (by calling its Release method). This is useful if the object needs to
michael@0 144 // live until the next run of the MessageLoop, or if the object needs to be
michael@0 145 // released on a particular thread.
michael@0 146 //
michael@0 147 // NOTE: This method may be called on any thread. The object will be
michael@0 148 // released (and thus possibly deleted) on the thread that executes
michael@0 149 // MessageLoop::Run(). If this is not the same as the thread that calls
michael@0 150 // PostDelayedTask(FROM_HERE, ), then T MUST inherit from
michael@0 151 // RefCountedThreadSafe<T>!
michael@0 152 template <class T>
michael@0 153 void ReleaseSoon(const tracked_objects::Location& from_here, T* object) {
michael@0 154 PostNonNestableTask(from_here, new ReleaseTask<T>(object));
michael@0 155 }
michael@0 156
michael@0 157 // Run the message loop.
michael@0 158 void Run();
michael@0 159
michael@0 160 // Process all pending tasks, windows messages, etc., but don't wait/sleep.
michael@0 161 // Return as soon as all items that can be run are taken care of.
michael@0 162 void RunAllPending();
michael@0 163
michael@0 164 // Signals the Run method to return after it is done processing all pending
michael@0 165 // messages. This method may only be called on the same thread that called
michael@0 166 // Run, and Run must still be on the call stack.
michael@0 167 //
michael@0 168 // Use QuitTask if you need to Quit another thread's MessageLoop, but note
michael@0 169 // that doing so is fairly dangerous if the target thread makes nested calls
michael@0 170 // to MessageLoop::Run. The problem being that you won't know which nested
michael@0 171 // run loop you are quiting, so be careful!
michael@0 172 //
michael@0 173 void Quit();
michael@0 174
michael@0 175 // Invokes Quit on the current MessageLoop when run. Useful to schedule an
michael@0 176 // arbitrary MessageLoop to Quit.
michael@0 177 class QuitTask : public Task {
michael@0 178 public:
michael@0 179 virtual void Run() {
michael@0 180 MessageLoop::current()->Quit();
michael@0 181 }
michael@0 182 };
michael@0 183
michael@0 184 // A MessageLoop has a particular type, which indicates the set of
michael@0 185 // asynchronous events it may process in addition to tasks and timers.
michael@0 186 //
michael@0 187 // TYPE_DEFAULT
michael@0 188 // This type of ML only supports tasks and timers.
michael@0 189 //
michael@0 190 // TYPE_UI
michael@0 191 // This type of ML also supports native UI events (e.g., Windows messages).
michael@0 192 // See also MessageLoopForUI.
michael@0 193 //
michael@0 194 // TYPE_IO
michael@0 195 // This type of ML also supports asynchronous IO. See also
michael@0 196 // MessageLoopForIO.
michael@0 197 //
michael@0 198 // TYPE_MOZILLA_CHILD
michael@0 199 // This type of ML is used in Mozilla child processes which initialize
michael@0 200 // XPCOM and use the gecko event loop.
michael@0 201 //
michael@0 202 // TYPE_MOZILLA_UI
michael@0 203 // This type of ML is used in Mozilla parent processes which initialize
michael@0 204 // XPCOM and use the gecko event loop.
michael@0 205 //
michael@0 206 // TYPE_MOZILLA_NONMAINTHREAD
michael@0 207 // This type of ML is used in Mozilla parent processes which initialize
michael@0 208 // XPCOM and use the nsThread event loop.
michael@0 209 //
michael@0 210 enum Type {
michael@0 211 TYPE_DEFAULT,
michael@0 212 TYPE_UI,
michael@0 213 TYPE_IO,
michael@0 214 TYPE_MOZILLA_CHILD,
michael@0 215 TYPE_MOZILLA_UI,
michael@0 216 TYPE_MOZILLA_NONMAINTHREAD
michael@0 217 };
michael@0 218
michael@0 219 // Normally, it is not necessary to instantiate a MessageLoop. Instead, it
michael@0 220 // is typical to make use of the current thread's MessageLoop instance.
michael@0 221 explicit MessageLoop(Type type = TYPE_DEFAULT);
michael@0 222 ~MessageLoop();
michael@0 223
michael@0 224 // Returns the type passed to the constructor.
michael@0 225 Type type() const { return type_; }
michael@0 226
michael@0 227 // Unique, non-repeating ID for this message loop.
michael@0 228 int32_t id() const { return id_; }
michael@0 229
michael@0 230 // Optional call to connect the thread name with this loop.
michael@0 231 void set_thread_name(const std::string& thread_name) {
michael@0 232 DCHECK(thread_name_.empty()) << "Should not rename this thread!";
michael@0 233 thread_name_ = thread_name;
michael@0 234 }
michael@0 235 const std::string& thread_name() const { return thread_name_; }
michael@0 236
michael@0 237 // Returns the MessageLoop object for the current thread, or null if none.
michael@0 238 static MessageLoop* current();
michael@0 239
michael@0 240 // Enables or disables the recursive task processing. This happens in the case
michael@0 241 // of recursive message loops. Some unwanted message loop may occurs when
michael@0 242 // using common controls or printer functions. By default, recursive task
michael@0 243 // processing is disabled.
michael@0 244 //
michael@0 245 // The specific case where tasks get queued is:
michael@0 246 // - The thread is running a message loop.
michael@0 247 // - It receives a task #1 and execute it.
michael@0 248 // - The task #1 implicitly start a message loop, like a MessageBox in the
michael@0 249 // unit test. This can also be StartDoc or GetSaveFileName.
michael@0 250 // - The thread receives a task #2 before or while in this second message
michael@0 251 // loop.
michael@0 252 // - With NestableTasksAllowed set to true, the task #2 will run right away.
michael@0 253 // Otherwise, it will get executed right after task #1 completes at "thread
michael@0 254 // message loop level".
michael@0 255 void SetNestableTasksAllowed(bool allowed);
michael@0 256 void ScheduleWork();
michael@0 257 bool NestableTasksAllowed() const;
michael@0 258
michael@0 259 // Enables or disables the restoration during an exception of the unhandled
michael@0 260 // exception filter that was active when Run() was called. This can happen
michael@0 261 // if some third party code call SetUnhandledExceptionFilter() and never
michael@0 262 // restores the previous filter.
michael@0 263 void set_exception_restoration(bool restore) {
michael@0 264 exception_restoration_ = restore;
michael@0 265 }
michael@0 266
michael@0 267 #if defined(OS_WIN)
michael@0 268 void set_os_modal_loop(bool os_modal_loop) {
michael@0 269 os_modal_loop_ = os_modal_loop;
michael@0 270 }
michael@0 271
michael@0 272 bool & os_modal_loop() {
michael@0 273 return os_modal_loop_;
michael@0 274 }
michael@0 275 #endif // OS_WIN
michael@0 276
michael@0 277 // Set the timeouts for background hang monitoring.
michael@0 278 // A value of 0 indicates there is no timeout.
michael@0 279 void set_hang_timeouts(uint32_t transient_timeout_ms,
michael@0 280 uint32_t permanent_timeout_ms) {
michael@0 281 transient_hang_timeout_ = transient_timeout_ms;
michael@0 282 permanent_hang_timeout_ = permanent_timeout_ms;
michael@0 283 }
michael@0 284 uint32_t transient_hang_timeout() const {
michael@0 285 return transient_hang_timeout_;
michael@0 286 }
michael@0 287 uint32_t permanent_hang_timeout() const {
michael@0 288 return permanent_hang_timeout_;
michael@0 289 }
michael@0 290
michael@0 291 //----------------------------------------------------------------------------
michael@0 292 protected:
michael@0 293 struct RunState {
michael@0 294 // Used to count how many Run() invocations are on the stack.
michael@0 295 int run_depth;
michael@0 296
michael@0 297 // Used to record that Quit() was called, or that we should quit the pump
michael@0 298 // once it becomes idle.
michael@0 299 bool quit_received;
michael@0 300
michael@0 301 #if defined(OS_WIN)
michael@0 302 base::MessagePumpWin::Dispatcher* dispatcher;
michael@0 303 #endif
michael@0 304 };
michael@0 305
michael@0 306 class AutoRunState : RunState {
michael@0 307 public:
michael@0 308 explicit AutoRunState(MessageLoop* loop);
michael@0 309 ~AutoRunState();
michael@0 310 private:
michael@0 311 MessageLoop* loop_;
michael@0 312 RunState* previous_state_;
michael@0 313 };
michael@0 314
michael@0 315 // This structure is copied around by value.
michael@0 316 struct PendingTask {
michael@0 317 Task* task; // The task to run.
michael@0 318 base::TimeTicks delayed_run_time; // The time when the task should be run.
michael@0 319 int sequence_num; // Secondary sort key for run time.
michael@0 320 bool nestable; // OK to dispatch from a nested loop.
michael@0 321
michael@0 322 PendingTask(Task* task, bool nestable)
michael@0 323 : task(task), sequence_num(0), nestable(nestable) {
michael@0 324 }
michael@0 325
michael@0 326 // Used to support sorting.
michael@0 327 bool operator<(const PendingTask& other) const;
michael@0 328 };
michael@0 329
michael@0 330 typedef std::queue<PendingTask> TaskQueue;
michael@0 331 typedef std::priority_queue<PendingTask> DelayedTaskQueue;
michael@0 332
michael@0 333 #if defined(OS_WIN)
michael@0 334 base::MessagePumpWin* pump_win() {
michael@0 335 return static_cast<base::MessagePumpWin*>(pump_.get());
michael@0 336 }
michael@0 337 #elif defined(OS_POSIX)
michael@0 338 base::MessagePumpLibevent* pump_libevent() {
michael@0 339 return static_cast<base::MessagePumpLibevent*>(pump_.get());
michael@0 340 }
michael@0 341 #endif
michael@0 342
michael@0 343 // A function to encapsulate all the exception handling capability in the
michael@0 344 // stacks around the running of a main message loop. It will run the message
michael@0 345 // loop in a SEH try block or not depending on the set_SEH_restoration()
michael@0 346 // flag.
michael@0 347 void RunHandler();
michael@0 348
michael@0 349 // A surrounding stack frame around the running of the message loop that
michael@0 350 // supports all saving and restoring of state, as is needed for any/all (ugly)
michael@0 351 // recursive calls.
michael@0 352 void RunInternal();
michael@0 353
michael@0 354 // Called to process any delayed non-nestable tasks.
michael@0 355 bool ProcessNextDelayedNonNestableTask();
michael@0 356
michael@0 357 //----------------------------------------------------------------------------
michael@0 358 // Run a work_queue_ task or new_task, and delete it (if it was processed by
michael@0 359 // PostTask). If there are queued tasks, the oldest one is executed and
michael@0 360 // new_task is queued. new_task is optional and can be NULL. In this NULL
michael@0 361 // case, the method will run one pending task (if any exist). Returns true if
michael@0 362 // it executes a task. Queued tasks accumulate only when there is a
michael@0 363 // non-nestable task currently processing, in which case the new_task is
michael@0 364 // appended to the list work_queue_. Such re-entrancy generally happens when
michael@0 365 // an unrequested message pump (typical of a native dialog) is executing in
michael@0 366 // the context of a task.
michael@0 367 bool QueueOrRunTask(Task* new_task);
michael@0 368
michael@0 369 // Runs the specified task and deletes it.
michael@0 370 void RunTask(Task* task);
michael@0 371
michael@0 372 // Calls RunTask or queues the pending_task on the deferred task list if it
michael@0 373 // cannot be run right now. Returns true if the task was run.
michael@0 374 bool DeferOrRunPendingTask(const PendingTask& pending_task);
michael@0 375
michael@0 376 // Adds the pending task to delayed_work_queue_.
michael@0 377 void AddToDelayedWorkQueue(const PendingTask& pending_task);
michael@0 378
michael@0 379 // Load tasks from the incoming_queue_ into work_queue_ if the latter is
michael@0 380 // empty. The former requires a lock to access, while the latter is directly
michael@0 381 // accessible on this thread.
michael@0 382 void ReloadWorkQueue();
michael@0 383
michael@0 384 // Delete tasks that haven't run yet without running them. Used in the
michael@0 385 // destructor to make sure all the task's destructors get called. Returns
michael@0 386 // true if some work was done.
michael@0 387 bool DeletePendingTasks();
michael@0 388
michael@0 389 // Post a task to our incomming queue.
michael@0 390 void PostTask_Helper(const tracked_objects::Location& from_here, Task* task,
michael@0 391 int delay_ms, bool nestable);
michael@0 392
michael@0 393 // base::MessagePump::Delegate methods:
michael@0 394 virtual bool DoWork();
michael@0 395 virtual bool DoDelayedWork(base::TimeTicks* next_delayed_work_time);
michael@0 396 virtual bool DoIdleWork();
michael@0 397
michael@0 398 Type type_;
michael@0 399 int32_t id_;
michael@0 400
michael@0 401 // A list of tasks that need to be processed by this instance. Note that
michael@0 402 // this queue is only accessed (push/pop) by our current thread.
michael@0 403 TaskQueue work_queue_;
michael@0 404
michael@0 405 // Contains delayed tasks, sorted by their 'delayed_run_time' property.
michael@0 406 DelayedTaskQueue delayed_work_queue_;
michael@0 407
michael@0 408 // A queue of non-nestable tasks that we had to defer because when it came
michael@0 409 // time to execute them we were in a nested message loop. They will execute
michael@0 410 // once we're out of nested message loops.
michael@0 411 TaskQueue deferred_non_nestable_work_queue_;
michael@0 412
michael@0 413 scoped_refptr<base::MessagePump> pump_;
michael@0 414
michael@0 415 base::ObserverList<DestructionObserver> destruction_observers_;
michael@0 416
michael@0 417 // A recursion block that prevents accidentally running additonal tasks when
michael@0 418 // insider a (accidentally induced?) nested message pump.
michael@0 419 bool nestable_tasks_allowed_;
michael@0 420
michael@0 421 bool exception_restoration_;
michael@0 422
michael@0 423 std::string thread_name_;
michael@0 424
michael@0 425 // A null terminated list which creates an incoming_queue of tasks that are
michael@0 426 // aquired under a mutex for processing on this instance's thread. These tasks
michael@0 427 // have not yet been sorted out into items for our work_queue_ vs items that
michael@0 428 // will be handled by the TimerManager.
michael@0 429 TaskQueue incoming_queue_;
michael@0 430 // Protect access to incoming_queue_.
michael@0 431 Lock incoming_queue_lock_;
michael@0 432
michael@0 433 RunState* state_;
michael@0 434 int run_depth_base_;
michael@0 435
michael@0 436 #if defined(OS_WIN)
michael@0 437 // Should be set to true before calling Windows APIs like TrackPopupMenu, etc
michael@0 438 // which enter a modal message loop.
michael@0 439 bool os_modal_loop_;
michael@0 440 #endif
michael@0 441
michael@0 442 // Timeout values for hang monitoring
michael@0 443 uint32_t transient_hang_timeout_;
michael@0 444 uint32_t permanent_hang_timeout_;
michael@0 445
michael@0 446 // The next sequence number to use for delayed tasks.
michael@0 447 int next_sequence_num_;
michael@0 448
michael@0 449 DISALLOW_COPY_AND_ASSIGN(MessageLoop);
michael@0 450 };
michael@0 451
michael@0 452 //-----------------------------------------------------------------------------
michael@0 453 // MessageLoopForUI extends MessageLoop with methods that are particular to a
michael@0 454 // MessageLoop instantiated with TYPE_UI.
michael@0 455 //
michael@0 456 // This class is typically used like so:
michael@0 457 // MessageLoopForUI::current()->...call some method...
michael@0 458 //
michael@0 459 class MessageLoopForUI : public MessageLoop {
michael@0 460 public:
michael@0 461 MessageLoopForUI(Type type=TYPE_UI) : MessageLoop(type) {
michael@0 462 }
michael@0 463
michael@0 464 // Returns the MessageLoopForUI of the current thread.
michael@0 465 static MessageLoopForUI* current() {
michael@0 466 MessageLoop* loop = MessageLoop::current();
michael@0 467 if (!loop)
michael@0 468 return NULL;
michael@0 469 Type type = loop->type();
michael@0 470 DCHECK(type == MessageLoop::TYPE_UI ||
michael@0 471 type == MessageLoop::TYPE_MOZILLA_UI ||
michael@0 472 type == MessageLoop::TYPE_MOZILLA_CHILD);
michael@0 473 return static_cast<MessageLoopForUI*>(loop);
michael@0 474 }
michael@0 475
michael@0 476 #if defined(OS_WIN)
michael@0 477 typedef base::MessagePumpWin::Dispatcher Dispatcher;
michael@0 478 typedef base::MessagePumpWin::Observer Observer;
michael@0 479
michael@0 480 // Please see MessagePumpWin for definitions of these methods.
michael@0 481 void Run(Dispatcher* dispatcher);
michael@0 482 void AddObserver(Observer* observer);
michael@0 483 void RemoveObserver(Observer* observer);
michael@0 484 void WillProcessMessage(const MSG& message);
michael@0 485 void DidProcessMessage(const MSG& message);
michael@0 486 void PumpOutPendingPaintMessages();
michael@0 487
michael@0 488 protected:
michael@0 489 // TODO(rvargas): Make this platform independent.
michael@0 490 base::MessagePumpForUI* pump_ui() {
michael@0 491 return static_cast<base::MessagePumpForUI*>(pump_.get());
michael@0 492 }
michael@0 493 #endif // defined(OS_WIN)
michael@0 494 };
michael@0 495
michael@0 496 // Do not add any member variables to MessageLoopForUI! This is important b/c
michael@0 497 // MessageLoopForUI is often allocated via MessageLoop(TYPE_UI). Any extra
michael@0 498 // data that you need should be stored on the MessageLoop's pump_ instance.
michael@0 499 COMPILE_ASSERT(sizeof(MessageLoop) == sizeof(MessageLoopForUI),
michael@0 500 MessageLoopForUI_should_not_have_extra_member_variables);
michael@0 501
michael@0 502 //-----------------------------------------------------------------------------
michael@0 503 // MessageLoopForIO extends MessageLoop with methods that are particular to a
michael@0 504 // MessageLoop instantiated with TYPE_IO.
michael@0 505 //
michael@0 506 // This class is typically used like so:
michael@0 507 // MessageLoopForIO::current()->...call some method...
michael@0 508 //
michael@0 509 class MessageLoopForIO : public MessageLoop {
michael@0 510 public:
michael@0 511 MessageLoopForIO() : MessageLoop(TYPE_IO) {
michael@0 512 }
michael@0 513
michael@0 514 // Returns the MessageLoopForIO of the current thread.
michael@0 515 static MessageLoopForIO* current() {
michael@0 516 MessageLoop* loop = MessageLoop::current();
michael@0 517 DCHECK_EQ(MessageLoop::TYPE_IO, loop->type());
michael@0 518 return static_cast<MessageLoopForIO*>(loop);
michael@0 519 }
michael@0 520
michael@0 521 #if defined(OS_WIN)
michael@0 522 typedef base::MessagePumpForIO::IOHandler IOHandler;
michael@0 523 typedef base::MessagePumpForIO::IOContext IOContext;
michael@0 524
michael@0 525 // Please see MessagePumpWin for definitions of these methods.
michael@0 526 void RegisterIOHandler(HANDLE file_handle, IOHandler* handler);
michael@0 527 bool WaitForIOCompletion(DWORD timeout, IOHandler* filter);
michael@0 528
michael@0 529 protected:
michael@0 530 // TODO(rvargas): Make this platform independent.
michael@0 531 base::MessagePumpForIO* pump_io() {
michael@0 532 return static_cast<base::MessagePumpForIO*>(pump_.get());
michael@0 533 }
michael@0 534
michael@0 535 #elif defined(OS_POSIX)
michael@0 536 typedef base::MessagePumpLibevent::Watcher Watcher;
michael@0 537 typedef base::MessagePumpLibevent::FileDescriptorWatcher
michael@0 538 FileDescriptorWatcher;
michael@0 539 typedef base::LineWatcher LineWatcher;
michael@0 540
michael@0 541 enum Mode {
michael@0 542 WATCH_READ = base::MessagePumpLibevent::WATCH_READ,
michael@0 543 WATCH_WRITE = base::MessagePumpLibevent::WATCH_WRITE,
michael@0 544 WATCH_READ_WRITE = base::MessagePumpLibevent::WATCH_READ_WRITE
michael@0 545 };
michael@0 546
michael@0 547 // Please see MessagePumpLibevent for definition.
michael@0 548 bool WatchFileDescriptor(int fd,
michael@0 549 bool persistent,
michael@0 550 Mode mode,
michael@0 551 FileDescriptorWatcher *controller,
michael@0 552 Watcher *delegate);
michael@0 553
michael@0 554 typedef base::MessagePumpLibevent::SignalEvent SignalEvent;
michael@0 555 typedef base::MessagePumpLibevent::SignalWatcher SignalWatcher;
michael@0 556 bool CatchSignal(int sig,
michael@0 557 SignalEvent* sigevent,
michael@0 558 SignalWatcher* delegate);
michael@0 559
michael@0 560 #endif // defined(OS_POSIX)
michael@0 561 };
michael@0 562
michael@0 563 // Do not add any member variables to MessageLoopForIO! This is important b/c
michael@0 564 // MessageLoopForIO is often allocated via MessageLoop(TYPE_IO). Any extra
michael@0 565 // data that you need should be stored on the MessageLoop's pump_ instance.
michael@0 566 COMPILE_ASSERT(sizeof(MessageLoop) == sizeof(MessageLoopForIO),
michael@0 567 MessageLoopForIO_should_not_have_extra_member_variables);
michael@0 568
michael@0 569 #endif // BASE_MESSAGE_LOOP_H_

mercurial