security/nss/lib/freebl/ecl/ecl_mult.c

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/security/nss/lib/freebl/ecl/ecl_mult.c	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,322 @@
     1.4 +/* This Source Code Form is subject to the terms of the Mozilla Public
     1.5 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.6 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     1.7 +
     1.8 +#include "mpi.h"
     1.9 +#include "mplogic.h"
    1.10 +#include "ecl.h"
    1.11 +#include "ecl-priv.h"
    1.12 +#include <stdlib.h>
    1.13 +
    1.14 +/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k * P(x, 
    1.15 + * y).  If x, y = NULL, then P is assumed to be the generator (base point) 
    1.16 + * of the group of points on the elliptic curve. Input and output values
    1.17 + * are assumed to be NOT field-encoded. */
    1.18 +mp_err
    1.19 +ECPoint_mul(const ECGroup *group, const mp_int *k, const mp_int *px,
    1.20 +			const mp_int *py, mp_int *rx, mp_int *ry)
    1.21 +{
    1.22 +	mp_err res = MP_OKAY;
    1.23 +	mp_int kt;
    1.24 +
    1.25 +	ARGCHK((k != NULL) && (group != NULL), MP_BADARG);
    1.26 +	MP_DIGITS(&kt) = 0;
    1.27 +
    1.28 +	/* want scalar to be less than or equal to group order */
    1.29 +	if (mp_cmp(k, &group->order) > 0) {
    1.30 +		MP_CHECKOK(mp_init(&kt));
    1.31 +		MP_CHECKOK(mp_mod(k, &group->order, &kt));
    1.32 +	} else {
    1.33 +		MP_SIGN(&kt) = MP_ZPOS;
    1.34 +		MP_USED(&kt) = MP_USED(k);
    1.35 +		MP_ALLOC(&kt) = MP_ALLOC(k);
    1.36 +		MP_DIGITS(&kt) = MP_DIGITS(k);
    1.37 +	}
    1.38 +
    1.39 +	if ((px == NULL) || (py == NULL)) {
    1.40 +		if (group->base_point_mul) {
    1.41 +			MP_CHECKOK(group->base_point_mul(&kt, rx, ry, group));
    1.42 +		} else {
    1.43 +			MP_CHECKOK(group->
    1.44 +					   point_mul(&kt, &group->genx, &group->geny, rx, ry,
    1.45 +								 group));
    1.46 +		}
    1.47 +	} else {
    1.48 +		if (group->meth->field_enc) {
    1.49 +			MP_CHECKOK(group->meth->field_enc(px, rx, group->meth));
    1.50 +			MP_CHECKOK(group->meth->field_enc(py, ry, group->meth));
    1.51 +			MP_CHECKOK(group->point_mul(&kt, rx, ry, rx, ry, group));
    1.52 +		} else {
    1.53 +			MP_CHECKOK(group->point_mul(&kt, px, py, rx, ry, group));
    1.54 +		}
    1.55 +	}
    1.56 +	if (group->meth->field_dec) {
    1.57 +		MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
    1.58 +		MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
    1.59 +	}
    1.60 +
    1.61 +  CLEANUP:
    1.62 +	if (MP_DIGITS(&kt) != MP_DIGITS(k)) {
    1.63 +		mp_clear(&kt);
    1.64 +	}
    1.65 +	return res;
    1.66 +}
    1.67 +
    1.68 +/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G + 
    1.69 + * k2 * P(x, y), where G is the generator (base point) of the group of
    1.70 + * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
    1.71 + * Input and output values are assumed to be NOT field-encoded. */
    1.72 +mp_err
    1.73 +ec_pts_mul_basic(const mp_int *k1, const mp_int *k2, const mp_int *px,
    1.74 +				 const mp_int *py, mp_int *rx, mp_int *ry,
    1.75 +				 const ECGroup *group)
    1.76 +{
    1.77 +	mp_err res = MP_OKAY;
    1.78 +	mp_int sx, sy;
    1.79 +
    1.80 +	ARGCHK(group != NULL, MP_BADARG);
    1.81 +	ARGCHK(!((k1 == NULL)
    1.82 +			 && ((k2 == NULL) || (px == NULL)
    1.83 +				 || (py == NULL))), MP_BADARG);
    1.84 +
    1.85 +	/* if some arguments are not defined used ECPoint_mul */
    1.86 +	if (k1 == NULL) {
    1.87 +		return ECPoint_mul(group, k2, px, py, rx, ry);
    1.88 +	} else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
    1.89 +		return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
    1.90 +	}
    1.91 +
    1.92 +	MP_DIGITS(&sx) = 0;
    1.93 +	MP_DIGITS(&sy) = 0;
    1.94 +	MP_CHECKOK(mp_init(&sx));
    1.95 +	MP_CHECKOK(mp_init(&sy));
    1.96 +
    1.97 +	MP_CHECKOK(ECPoint_mul(group, k1, NULL, NULL, &sx, &sy));
    1.98 +	MP_CHECKOK(ECPoint_mul(group, k2, px, py, rx, ry));
    1.99 +
   1.100 +	if (group->meth->field_enc) {
   1.101 +		MP_CHECKOK(group->meth->field_enc(&sx, &sx, group->meth));
   1.102 +		MP_CHECKOK(group->meth->field_enc(&sy, &sy, group->meth));
   1.103 +		MP_CHECKOK(group->meth->field_enc(rx, rx, group->meth));
   1.104 +		MP_CHECKOK(group->meth->field_enc(ry, ry, group->meth));
   1.105 +	}
   1.106 +
   1.107 +	MP_CHECKOK(group->point_add(&sx, &sy, rx, ry, rx, ry, group));
   1.108 +
   1.109 +	if (group->meth->field_dec) {
   1.110 +		MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
   1.111 +		MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
   1.112 +	}
   1.113 +
   1.114 +  CLEANUP:
   1.115 +	mp_clear(&sx);
   1.116 +	mp_clear(&sy);
   1.117 +	return res;
   1.118 +}
   1.119 +
   1.120 +/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G + 
   1.121 + * k2 * P(x, y), where G is the generator (base point) of the group of
   1.122 + * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
   1.123 + * Input and output values are assumed to be NOT field-encoded. Uses
   1.124 + * algorithm 15 (simultaneous multiple point multiplication) from Brown,
   1.125 + * Hankerson, Lopez, Menezes. Software Implementation of the NIST
   1.126 + * Elliptic Curves over Prime Fields. */
   1.127 +mp_err
   1.128 +ec_pts_mul_simul_w2(const mp_int *k1, const mp_int *k2, const mp_int *px,
   1.129 +					const mp_int *py, mp_int *rx, mp_int *ry,
   1.130 +					const ECGroup *group)
   1.131 +{
   1.132 +	mp_err res = MP_OKAY;
   1.133 +	mp_int precomp[4][4][2];
   1.134 +	const mp_int *a, *b;
   1.135 +	int i, j;
   1.136 +	int ai, bi, d;
   1.137 +
   1.138 +	ARGCHK(group != NULL, MP_BADARG);
   1.139 +	ARGCHK(!((k1 == NULL)
   1.140 +			 && ((k2 == NULL) || (px == NULL)
   1.141 +				 || (py == NULL))), MP_BADARG);
   1.142 +
   1.143 +	/* if some arguments are not defined used ECPoint_mul */
   1.144 +	if (k1 == NULL) {
   1.145 +		return ECPoint_mul(group, k2, px, py, rx, ry);
   1.146 +	} else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
   1.147 +		return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
   1.148 +	}
   1.149 +
   1.150 +	/* initialize precomputation table */
   1.151 +	for (i = 0; i < 4; i++) {
   1.152 +		for (j = 0; j < 4; j++) {
   1.153 +			MP_DIGITS(&precomp[i][j][0]) = 0;
   1.154 +			MP_DIGITS(&precomp[i][j][1]) = 0;
   1.155 +		}
   1.156 +	}
   1.157 +	for (i = 0; i < 4; i++) {
   1.158 +		for (j = 0; j < 4; j++) {
   1.159 +			 MP_CHECKOK( mp_init_size(&precomp[i][j][0],
   1.160 +						 ECL_MAX_FIELD_SIZE_DIGITS) );
   1.161 +			 MP_CHECKOK( mp_init_size(&precomp[i][j][1],
   1.162 +						 ECL_MAX_FIELD_SIZE_DIGITS) );
   1.163 +		}
   1.164 +	}
   1.165 +
   1.166 +	/* fill precomputation table */
   1.167 +	/* assign {k1, k2} = {a, b} such that len(a) >= len(b) */
   1.168 +	if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) {
   1.169 +		a = k2;
   1.170 +		b = k1;
   1.171 +		if (group->meth->field_enc) {
   1.172 +			MP_CHECKOK(group->meth->
   1.173 +					   field_enc(px, &precomp[1][0][0], group->meth));
   1.174 +			MP_CHECKOK(group->meth->
   1.175 +					   field_enc(py, &precomp[1][0][1], group->meth));
   1.176 +		} else {
   1.177 +			MP_CHECKOK(mp_copy(px, &precomp[1][0][0]));
   1.178 +			MP_CHECKOK(mp_copy(py, &precomp[1][0][1]));
   1.179 +		}
   1.180 +		MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0]));
   1.181 +		MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1]));
   1.182 +	} else {
   1.183 +		a = k1;
   1.184 +		b = k2;
   1.185 +		MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0]));
   1.186 +		MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1]));
   1.187 +		if (group->meth->field_enc) {
   1.188 +			MP_CHECKOK(group->meth->
   1.189 +					   field_enc(px, &precomp[0][1][0], group->meth));
   1.190 +			MP_CHECKOK(group->meth->
   1.191 +					   field_enc(py, &precomp[0][1][1], group->meth));
   1.192 +		} else {
   1.193 +			MP_CHECKOK(mp_copy(px, &precomp[0][1][0]));
   1.194 +			MP_CHECKOK(mp_copy(py, &precomp[0][1][1]));
   1.195 +		}
   1.196 +	}
   1.197 +	/* precompute [*][0][*] */
   1.198 +	mp_zero(&precomp[0][0][0]);
   1.199 +	mp_zero(&precomp[0][0][1]);
   1.200 +	MP_CHECKOK(group->
   1.201 +			   point_dbl(&precomp[1][0][0], &precomp[1][0][1],
   1.202 +						 &precomp[2][0][0], &precomp[2][0][1], group));
   1.203 +	MP_CHECKOK(group->
   1.204 +			   point_add(&precomp[1][0][0], &precomp[1][0][1],
   1.205 +						 &precomp[2][0][0], &precomp[2][0][1],
   1.206 +						 &precomp[3][0][0], &precomp[3][0][1], group));
   1.207 +	/* precompute [*][1][*] */
   1.208 +	for (i = 1; i < 4; i++) {
   1.209 +		MP_CHECKOK(group->
   1.210 +				   point_add(&precomp[0][1][0], &precomp[0][1][1],
   1.211 +							 &precomp[i][0][0], &precomp[i][0][1],
   1.212 +							 &precomp[i][1][0], &precomp[i][1][1], group));
   1.213 +	}
   1.214 +	/* precompute [*][2][*] */
   1.215 +	MP_CHECKOK(group->
   1.216 +			   point_dbl(&precomp[0][1][0], &precomp[0][1][1],
   1.217 +						 &precomp[0][2][0], &precomp[0][2][1], group));
   1.218 +	for (i = 1; i < 4; i++) {
   1.219 +		MP_CHECKOK(group->
   1.220 +				   point_add(&precomp[0][2][0], &precomp[0][2][1],
   1.221 +							 &precomp[i][0][0], &precomp[i][0][1],
   1.222 +							 &precomp[i][2][0], &precomp[i][2][1], group));
   1.223 +	}
   1.224 +	/* precompute [*][3][*] */
   1.225 +	MP_CHECKOK(group->
   1.226 +			   point_add(&precomp[0][1][0], &precomp[0][1][1],
   1.227 +						 &precomp[0][2][0], &precomp[0][2][1],
   1.228 +						 &precomp[0][3][0], &precomp[0][3][1], group));
   1.229 +	for (i = 1; i < 4; i++) {
   1.230 +		MP_CHECKOK(group->
   1.231 +				   point_add(&precomp[0][3][0], &precomp[0][3][1],
   1.232 +							 &precomp[i][0][0], &precomp[i][0][1],
   1.233 +							 &precomp[i][3][0], &precomp[i][3][1], group));
   1.234 +	}
   1.235 +
   1.236 +	d = (mpl_significant_bits(a) + 1) / 2;
   1.237 +
   1.238 +	/* R = inf */
   1.239 +	mp_zero(rx);
   1.240 +	mp_zero(ry);
   1.241 +
   1.242 +	for (i = d - 1; i >= 0; i--) {
   1.243 +		ai = MP_GET_BIT(a, 2 * i + 1);
   1.244 +		ai <<= 1;
   1.245 +		ai |= MP_GET_BIT(a, 2 * i);
   1.246 +		bi = MP_GET_BIT(b, 2 * i + 1);
   1.247 +		bi <<= 1;
   1.248 +		bi |= MP_GET_BIT(b, 2 * i);
   1.249 +		/* R = 2^2 * R */
   1.250 +		MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group));
   1.251 +		MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group));
   1.252 +		/* R = R + (ai * A + bi * B) */
   1.253 +		MP_CHECKOK(group->
   1.254 +				   point_add(rx, ry, &precomp[ai][bi][0],
   1.255 +							 &precomp[ai][bi][1], rx, ry, group));
   1.256 +	}
   1.257 +
   1.258 +	if (group->meth->field_dec) {
   1.259 +		MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
   1.260 +		MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
   1.261 +	}
   1.262 +
   1.263 +  CLEANUP:
   1.264 +	for (i = 0; i < 4; i++) {
   1.265 +		for (j = 0; j < 4; j++) {
   1.266 +			mp_clear(&precomp[i][j][0]);
   1.267 +			mp_clear(&precomp[i][j][1]);
   1.268 +		}
   1.269 +	}
   1.270 +	return res;
   1.271 +}
   1.272 +
   1.273 +/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G + 
   1.274 + * k2 * P(x, y), where G is the generator (base point) of the group of
   1.275 + * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
   1.276 + * Input and output values are assumed to be NOT field-encoded. */
   1.277 +mp_err
   1.278 +ECPoints_mul(const ECGroup *group, const mp_int *k1, const mp_int *k2,
   1.279 +			 const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry)
   1.280 +{
   1.281 +	mp_err res = MP_OKAY;
   1.282 +	mp_int k1t, k2t;
   1.283 +	const mp_int *k1p, *k2p;
   1.284 +
   1.285 +	MP_DIGITS(&k1t) = 0;
   1.286 +	MP_DIGITS(&k2t) = 0;
   1.287 +
   1.288 +	ARGCHK(group != NULL, MP_BADARG);
   1.289 +
   1.290 +	/* want scalar to be less than or equal to group order */
   1.291 +	if (k1 != NULL) {
   1.292 +		if (mp_cmp(k1, &group->order) >= 0) {
   1.293 +			MP_CHECKOK(mp_init(&k1t));
   1.294 +			MP_CHECKOK(mp_mod(k1, &group->order, &k1t));
   1.295 +			k1p = &k1t;
   1.296 +		} else {
   1.297 +			k1p = k1;
   1.298 +		}
   1.299 +	} else {
   1.300 +		k1p = k1;
   1.301 +	}
   1.302 +	if (k2 != NULL) {
   1.303 +		if (mp_cmp(k2, &group->order) >= 0) {
   1.304 +			MP_CHECKOK(mp_init(&k2t));
   1.305 +			MP_CHECKOK(mp_mod(k2, &group->order, &k2t));
   1.306 +			k2p = &k2t;
   1.307 +		} else {
   1.308 +			k2p = k2;
   1.309 +		}
   1.310 +	} else {
   1.311 +		k2p = k2;
   1.312 +	}
   1.313 +
   1.314 +	/* if points_mul is defined, then use it */
   1.315 +	if (group->points_mul) {
   1.316 +		res = group->points_mul(k1p, k2p, px, py, rx, ry, group);
   1.317 +	} else {
   1.318 +		res = ec_pts_mul_simul_w2(k1p, k2p, px, py, rx, ry, group);
   1.319 +	}
   1.320 +
   1.321 +  CLEANUP:
   1.322 +	mp_clear(&k1t);
   1.323 +	mp_clear(&k2t);
   1.324 +	return res;
   1.325 +}

mercurial