security/nss/lib/freebl/ecl/ecl_mult.c

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 /* This Source Code Form is subject to the terms of the Mozilla Public
     2  * License, v. 2.0. If a copy of the MPL was not distributed with this
     3  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     5 #include "mpi.h"
     6 #include "mplogic.h"
     7 #include "ecl.h"
     8 #include "ecl-priv.h"
     9 #include <stdlib.h>
    11 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k * P(x, 
    12  * y).  If x, y = NULL, then P is assumed to be the generator (base point) 
    13  * of the group of points on the elliptic curve. Input and output values
    14  * are assumed to be NOT field-encoded. */
    15 mp_err
    16 ECPoint_mul(const ECGroup *group, const mp_int *k, const mp_int *px,
    17 			const mp_int *py, mp_int *rx, mp_int *ry)
    18 {
    19 	mp_err res = MP_OKAY;
    20 	mp_int kt;
    22 	ARGCHK((k != NULL) && (group != NULL), MP_BADARG);
    23 	MP_DIGITS(&kt) = 0;
    25 	/* want scalar to be less than or equal to group order */
    26 	if (mp_cmp(k, &group->order) > 0) {
    27 		MP_CHECKOK(mp_init(&kt));
    28 		MP_CHECKOK(mp_mod(k, &group->order, &kt));
    29 	} else {
    30 		MP_SIGN(&kt) = MP_ZPOS;
    31 		MP_USED(&kt) = MP_USED(k);
    32 		MP_ALLOC(&kt) = MP_ALLOC(k);
    33 		MP_DIGITS(&kt) = MP_DIGITS(k);
    34 	}
    36 	if ((px == NULL) || (py == NULL)) {
    37 		if (group->base_point_mul) {
    38 			MP_CHECKOK(group->base_point_mul(&kt, rx, ry, group));
    39 		} else {
    40 			MP_CHECKOK(group->
    41 					   point_mul(&kt, &group->genx, &group->geny, rx, ry,
    42 								 group));
    43 		}
    44 	} else {
    45 		if (group->meth->field_enc) {
    46 			MP_CHECKOK(group->meth->field_enc(px, rx, group->meth));
    47 			MP_CHECKOK(group->meth->field_enc(py, ry, group->meth));
    48 			MP_CHECKOK(group->point_mul(&kt, rx, ry, rx, ry, group));
    49 		} else {
    50 			MP_CHECKOK(group->point_mul(&kt, px, py, rx, ry, group));
    51 		}
    52 	}
    53 	if (group->meth->field_dec) {
    54 		MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
    55 		MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
    56 	}
    58   CLEANUP:
    59 	if (MP_DIGITS(&kt) != MP_DIGITS(k)) {
    60 		mp_clear(&kt);
    61 	}
    62 	return res;
    63 }
    65 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G + 
    66  * k2 * P(x, y), where G is the generator (base point) of the group of
    67  * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
    68  * Input and output values are assumed to be NOT field-encoded. */
    69 mp_err
    70 ec_pts_mul_basic(const mp_int *k1, const mp_int *k2, const mp_int *px,
    71 				 const mp_int *py, mp_int *rx, mp_int *ry,
    72 				 const ECGroup *group)
    73 {
    74 	mp_err res = MP_OKAY;
    75 	mp_int sx, sy;
    77 	ARGCHK(group != NULL, MP_BADARG);
    78 	ARGCHK(!((k1 == NULL)
    79 			 && ((k2 == NULL) || (px == NULL)
    80 				 || (py == NULL))), MP_BADARG);
    82 	/* if some arguments are not defined used ECPoint_mul */
    83 	if (k1 == NULL) {
    84 		return ECPoint_mul(group, k2, px, py, rx, ry);
    85 	} else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
    86 		return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
    87 	}
    89 	MP_DIGITS(&sx) = 0;
    90 	MP_DIGITS(&sy) = 0;
    91 	MP_CHECKOK(mp_init(&sx));
    92 	MP_CHECKOK(mp_init(&sy));
    94 	MP_CHECKOK(ECPoint_mul(group, k1, NULL, NULL, &sx, &sy));
    95 	MP_CHECKOK(ECPoint_mul(group, k2, px, py, rx, ry));
    97 	if (group->meth->field_enc) {
    98 		MP_CHECKOK(group->meth->field_enc(&sx, &sx, group->meth));
    99 		MP_CHECKOK(group->meth->field_enc(&sy, &sy, group->meth));
   100 		MP_CHECKOK(group->meth->field_enc(rx, rx, group->meth));
   101 		MP_CHECKOK(group->meth->field_enc(ry, ry, group->meth));
   102 	}
   104 	MP_CHECKOK(group->point_add(&sx, &sy, rx, ry, rx, ry, group));
   106 	if (group->meth->field_dec) {
   107 		MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
   108 		MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
   109 	}
   111   CLEANUP:
   112 	mp_clear(&sx);
   113 	mp_clear(&sy);
   114 	return res;
   115 }
   117 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G + 
   118  * k2 * P(x, y), where G is the generator (base point) of the group of
   119  * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
   120  * Input and output values are assumed to be NOT field-encoded. Uses
   121  * algorithm 15 (simultaneous multiple point multiplication) from Brown,
   122  * Hankerson, Lopez, Menezes. Software Implementation of the NIST
   123  * Elliptic Curves over Prime Fields. */
   124 mp_err
   125 ec_pts_mul_simul_w2(const mp_int *k1, const mp_int *k2, const mp_int *px,
   126 					const mp_int *py, mp_int *rx, mp_int *ry,
   127 					const ECGroup *group)
   128 {
   129 	mp_err res = MP_OKAY;
   130 	mp_int precomp[4][4][2];
   131 	const mp_int *a, *b;
   132 	int i, j;
   133 	int ai, bi, d;
   135 	ARGCHK(group != NULL, MP_BADARG);
   136 	ARGCHK(!((k1 == NULL)
   137 			 && ((k2 == NULL) || (px == NULL)
   138 				 || (py == NULL))), MP_BADARG);
   140 	/* if some arguments are not defined used ECPoint_mul */
   141 	if (k1 == NULL) {
   142 		return ECPoint_mul(group, k2, px, py, rx, ry);
   143 	} else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
   144 		return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
   145 	}
   147 	/* initialize precomputation table */
   148 	for (i = 0; i < 4; i++) {
   149 		for (j = 0; j < 4; j++) {
   150 			MP_DIGITS(&precomp[i][j][0]) = 0;
   151 			MP_DIGITS(&precomp[i][j][1]) = 0;
   152 		}
   153 	}
   154 	for (i = 0; i < 4; i++) {
   155 		for (j = 0; j < 4; j++) {
   156 			 MP_CHECKOK( mp_init_size(&precomp[i][j][0],
   157 						 ECL_MAX_FIELD_SIZE_DIGITS) );
   158 			 MP_CHECKOK( mp_init_size(&precomp[i][j][1],
   159 						 ECL_MAX_FIELD_SIZE_DIGITS) );
   160 		}
   161 	}
   163 	/* fill precomputation table */
   164 	/* assign {k1, k2} = {a, b} such that len(a) >= len(b) */
   165 	if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) {
   166 		a = k2;
   167 		b = k1;
   168 		if (group->meth->field_enc) {
   169 			MP_CHECKOK(group->meth->
   170 					   field_enc(px, &precomp[1][0][0], group->meth));
   171 			MP_CHECKOK(group->meth->
   172 					   field_enc(py, &precomp[1][0][1], group->meth));
   173 		} else {
   174 			MP_CHECKOK(mp_copy(px, &precomp[1][0][0]));
   175 			MP_CHECKOK(mp_copy(py, &precomp[1][0][1]));
   176 		}
   177 		MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0]));
   178 		MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1]));
   179 	} else {
   180 		a = k1;
   181 		b = k2;
   182 		MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0]));
   183 		MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1]));
   184 		if (group->meth->field_enc) {
   185 			MP_CHECKOK(group->meth->
   186 					   field_enc(px, &precomp[0][1][0], group->meth));
   187 			MP_CHECKOK(group->meth->
   188 					   field_enc(py, &precomp[0][1][1], group->meth));
   189 		} else {
   190 			MP_CHECKOK(mp_copy(px, &precomp[0][1][0]));
   191 			MP_CHECKOK(mp_copy(py, &precomp[0][1][1]));
   192 		}
   193 	}
   194 	/* precompute [*][0][*] */
   195 	mp_zero(&precomp[0][0][0]);
   196 	mp_zero(&precomp[0][0][1]);
   197 	MP_CHECKOK(group->
   198 			   point_dbl(&precomp[1][0][0], &precomp[1][0][1],
   199 						 &precomp[2][0][0], &precomp[2][0][1], group));
   200 	MP_CHECKOK(group->
   201 			   point_add(&precomp[1][0][0], &precomp[1][0][1],
   202 						 &precomp[2][0][0], &precomp[2][0][1],
   203 						 &precomp[3][0][0], &precomp[3][0][1], group));
   204 	/* precompute [*][1][*] */
   205 	for (i = 1; i < 4; i++) {
   206 		MP_CHECKOK(group->
   207 				   point_add(&precomp[0][1][0], &precomp[0][1][1],
   208 							 &precomp[i][0][0], &precomp[i][0][1],
   209 							 &precomp[i][1][0], &precomp[i][1][1], group));
   210 	}
   211 	/* precompute [*][2][*] */
   212 	MP_CHECKOK(group->
   213 			   point_dbl(&precomp[0][1][0], &precomp[0][1][1],
   214 						 &precomp[0][2][0], &precomp[0][2][1], group));
   215 	for (i = 1; i < 4; i++) {
   216 		MP_CHECKOK(group->
   217 				   point_add(&precomp[0][2][0], &precomp[0][2][1],
   218 							 &precomp[i][0][0], &precomp[i][0][1],
   219 							 &precomp[i][2][0], &precomp[i][2][1], group));
   220 	}
   221 	/* precompute [*][3][*] */
   222 	MP_CHECKOK(group->
   223 			   point_add(&precomp[0][1][0], &precomp[0][1][1],
   224 						 &precomp[0][2][0], &precomp[0][2][1],
   225 						 &precomp[0][3][0], &precomp[0][3][1], group));
   226 	for (i = 1; i < 4; i++) {
   227 		MP_CHECKOK(group->
   228 				   point_add(&precomp[0][3][0], &precomp[0][3][1],
   229 							 &precomp[i][0][0], &precomp[i][0][1],
   230 							 &precomp[i][3][0], &precomp[i][3][1], group));
   231 	}
   233 	d = (mpl_significant_bits(a) + 1) / 2;
   235 	/* R = inf */
   236 	mp_zero(rx);
   237 	mp_zero(ry);
   239 	for (i = d - 1; i >= 0; i--) {
   240 		ai = MP_GET_BIT(a, 2 * i + 1);
   241 		ai <<= 1;
   242 		ai |= MP_GET_BIT(a, 2 * i);
   243 		bi = MP_GET_BIT(b, 2 * i + 1);
   244 		bi <<= 1;
   245 		bi |= MP_GET_BIT(b, 2 * i);
   246 		/* R = 2^2 * R */
   247 		MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group));
   248 		MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group));
   249 		/* R = R + (ai * A + bi * B) */
   250 		MP_CHECKOK(group->
   251 				   point_add(rx, ry, &precomp[ai][bi][0],
   252 							 &precomp[ai][bi][1], rx, ry, group));
   253 	}
   255 	if (group->meth->field_dec) {
   256 		MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
   257 		MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
   258 	}
   260   CLEANUP:
   261 	for (i = 0; i < 4; i++) {
   262 		for (j = 0; j < 4; j++) {
   263 			mp_clear(&precomp[i][j][0]);
   264 			mp_clear(&precomp[i][j][1]);
   265 		}
   266 	}
   267 	return res;
   268 }
   270 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G + 
   271  * k2 * P(x, y), where G is the generator (base point) of the group of
   272  * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
   273  * Input and output values are assumed to be NOT field-encoded. */
   274 mp_err
   275 ECPoints_mul(const ECGroup *group, const mp_int *k1, const mp_int *k2,
   276 			 const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry)
   277 {
   278 	mp_err res = MP_OKAY;
   279 	mp_int k1t, k2t;
   280 	const mp_int *k1p, *k2p;
   282 	MP_DIGITS(&k1t) = 0;
   283 	MP_DIGITS(&k2t) = 0;
   285 	ARGCHK(group != NULL, MP_BADARG);
   287 	/* want scalar to be less than or equal to group order */
   288 	if (k1 != NULL) {
   289 		if (mp_cmp(k1, &group->order) >= 0) {
   290 			MP_CHECKOK(mp_init(&k1t));
   291 			MP_CHECKOK(mp_mod(k1, &group->order, &k1t));
   292 			k1p = &k1t;
   293 		} else {
   294 			k1p = k1;
   295 		}
   296 	} else {
   297 		k1p = k1;
   298 	}
   299 	if (k2 != NULL) {
   300 		if (mp_cmp(k2, &group->order) >= 0) {
   301 			MP_CHECKOK(mp_init(&k2t));
   302 			MP_CHECKOK(mp_mod(k2, &group->order, &k2t));
   303 			k2p = &k2t;
   304 		} else {
   305 			k2p = k2;
   306 		}
   307 	} else {
   308 		k2p = k2;
   309 	}
   311 	/* if points_mul is defined, then use it */
   312 	if (group->points_mul) {
   313 		res = group->points_mul(k1p, k2p, px, py, rx, ry, group);
   314 	} else {
   315 		res = ec_pts_mul_simul_w2(k1p, k2p, px, py, rx, ry, group);
   316 	}
   318   CLEANUP:
   319 	mp_clear(&k1t);
   320 	mp_clear(&k2t);
   321 	return res;
   322 }

mercurial