security/nss/lib/freebl/ecl/ecl_mult.c

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

michael@0 1 /* This Source Code Form is subject to the terms of the Mozilla Public
michael@0 2 * License, v. 2.0. If a copy of the MPL was not distributed with this
michael@0 3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
michael@0 4
michael@0 5 #include "mpi.h"
michael@0 6 #include "mplogic.h"
michael@0 7 #include "ecl.h"
michael@0 8 #include "ecl-priv.h"
michael@0 9 #include <stdlib.h>
michael@0 10
michael@0 11 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k * P(x,
michael@0 12 * y). If x, y = NULL, then P is assumed to be the generator (base point)
michael@0 13 * of the group of points on the elliptic curve. Input and output values
michael@0 14 * are assumed to be NOT field-encoded. */
michael@0 15 mp_err
michael@0 16 ECPoint_mul(const ECGroup *group, const mp_int *k, const mp_int *px,
michael@0 17 const mp_int *py, mp_int *rx, mp_int *ry)
michael@0 18 {
michael@0 19 mp_err res = MP_OKAY;
michael@0 20 mp_int kt;
michael@0 21
michael@0 22 ARGCHK((k != NULL) && (group != NULL), MP_BADARG);
michael@0 23 MP_DIGITS(&kt) = 0;
michael@0 24
michael@0 25 /* want scalar to be less than or equal to group order */
michael@0 26 if (mp_cmp(k, &group->order) > 0) {
michael@0 27 MP_CHECKOK(mp_init(&kt));
michael@0 28 MP_CHECKOK(mp_mod(k, &group->order, &kt));
michael@0 29 } else {
michael@0 30 MP_SIGN(&kt) = MP_ZPOS;
michael@0 31 MP_USED(&kt) = MP_USED(k);
michael@0 32 MP_ALLOC(&kt) = MP_ALLOC(k);
michael@0 33 MP_DIGITS(&kt) = MP_DIGITS(k);
michael@0 34 }
michael@0 35
michael@0 36 if ((px == NULL) || (py == NULL)) {
michael@0 37 if (group->base_point_mul) {
michael@0 38 MP_CHECKOK(group->base_point_mul(&kt, rx, ry, group));
michael@0 39 } else {
michael@0 40 MP_CHECKOK(group->
michael@0 41 point_mul(&kt, &group->genx, &group->geny, rx, ry,
michael@0 42 group));
michael@0 43 }
michael@0 44 } else {
michael@0 45 if (group->meth->field_enc) {
michael@0 46 MP_CHECKOK(group->meth->field_enc(px, rx, group->meth));
michael@0 47 MP_CHECKOK(group->meth->field_enc(py, ry, group->meth));
michael@0 48 MP_CHECKOK(group->point_mul(&kt, rx, ry, rx, ry, group));
michael@0 49 } else {
michael@0 50 MP_CHECKOK(group->point_mul(&kt, px, py, rx, ry, group));
michael@0 51 }
michael@0 52 }
michael@0 53 if (group->meth->field_dec) {
michael@0 54 MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
michael@0 55 MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
michael@0 56 }
michael@0 57
michael@0 58 CLEANUP:
michael@0 59 if (MP_DIGITS(&kt) != MP_DIGITS(k)) {
michael@0 60 mp_clear(&kt);
michael@0 61 }
michael@0 62 return res;
michael@0 63 }
michael@0 64
michael@0 65 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
michael@0 66 * k2 * P(x, y), where G is the generator (base point) of the group of
michael@0 67 * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
michael@0 68 * Input and output values are assumed to be NOT field-encoded. */
michael@0 69 mp_err
michael@0 70 ec_pts_mul_basic(const mp_int *k1, const mp_int *k2, const mp_int *px,
michael@0 71 const mp_int *py, mp_int *rx, mp_int *ry,
michael@0 72 const ECGroup *group)
michael@0 73 {
michael@0 74 mp_err res = MP_OKAY;
michael@0 75 mp_int sx, sy;
michael@0 76
michael@0 77 ARGCHK(group != NULL, MP_BADARG);
michael@0 78 ARGCHK(!((k1 == NULL)
michael@0 79 && ((k2 == NULL) || (px == NULL)
michael@0 80 || (py == NULL))), MP_BADARG);
michael@0 81
michael@0 82 /* if some arguments are not defined used ECPoint_mul */
michael@0 83 if (k1 == NULL) {
michael@0 84 return ECPoint_mul(group, k2, px, py, rx, ry);
michael@0 85 } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
michael@0 86 return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
michael@0 87 }
michael@0 88
michael@0 89 MP_DIGITS(&sx) = 0;
michael@0 90 MP_DIGITS(&sy) = 0;
michael@0 91 MP_CHECKOK(mp_init(&sx));
michael@0 92 MP_CHECKOK(mp_init(&sy));
michael@0 93
michael@0 94 MP_CHECKOK(ECPoint_mul(group, k1, NULL, NULL, &sx, &sy));
michael@0 95 MP_CHECKOK(ECPoint_mul(group, k2, px, py, rx, ry));
michael@0 96
michael@0 97 if (group->meth->field_enc) {
michael@0 98 MP_CHECKOK(group->meth->field_enc(&sx, &sx, group->meth));
michael@0 99 MP_CHECKOK(group->meth->field_enc(&sy, &sy, group->meth));
michael@0 100 MP_CHECKOK(group->meth->field_enc(rx, rx, group->meth));
michael@0 101 MP_CHECKOK(group->meth->field_enc(ry, ry, group->meth));
michael@0 102 }
michael@0 103
michael@0 104 MP_CHECKOK(group->point_add(&sx, &sy, rx, ry, rx, ry, group));
michael@0 105
michael@0 106 if (group->meth->field_dec) {
michael@0 107 MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
michael@0 108 MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
michael@0 109 }
michael@0 110
michael@0 111 CLEANUP:
michael@0 112 mp_clear(&sx);
michael@0 113 mp_clear(&sy);
michael@0 114 return res;
michael@0 115 }
michael@0 116
michael@0 117 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
michael@0 118 * k2 * P(x, y), where G is the generator (base point) of the group of
michael@0 119 * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
michael@0 120 * Input and output values are assumed to be NOT field-encoded. Uses
michael@0 121 * algorithm 15 (simultaneous multiple point multiplication) from Brown,
michael@0 122 * Hankerson, Lopez, Menezes. Software Implementation of the NIST
michael@0 123 * Elliptic Curves over Prime Fields. */
michael@0 124 mp_err
michael@0 125 ec_pts_mul_simul_w2(const mp_int *k1, const mp_int *k2, const mp_int *px,
michael@0 126 const mp_int *py, mp_int *rx, mp_int *ry,
michael@0 127 const ECGroup *group)
michael@0 128 {
michael@0 129 mp_err res = MP_OKAY;
michael@0 130 mp_int precomp[4][4][2];
michael@0 131 const mp_int *a, *b;
michael@0 132 int i, j;
michael@0 133 int ai, bi, d;
michael@0 134
michael@0 135 ARGCHK(group != NULL, MP_BADARG);
michael@0 136 ARGCHK(!((k1 == NULL)
michael@0 137 && ((k2 == NULL) || (px == NULL)
michael@0 138 || (py == NULL))), MP_BADARG);
michael@0 139
michael@0 140 /* if some arguments are not defined used ECPoint_mul */
michael@0 141 if (k1 == NULL) {
michael@0 142 return ECPoint_mul(group, k2, px, py, rx, ry);
michael@0 143 } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
michael@0 144 return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
michael@0 145 }
michael@0 146
michael@0 147 /* initialize precomputation table */
michael@0 148 for (i = 0; i < 4; i++) {
michael@0 149 for (j = 0; j < 4; j++) {
michael@0 150 MP_DIGITS(&precomp[i][j][0]) = 0;
michael@0 151 MP_DIGITS(&precomp[i][j][1]) = 0;
michael@0 152 }
michael@0 153 }
michael@0 154 for (i = 0; i < 4; i++) {
michael@0 155 for (j = 0; j < 4; j++) {
michael@0 156 MP_CHECKOK( mp_init_size(&precomp[i][j][0],
michael@0 157 ECL_MAX_FIELD_SIZE_DIGITS) );
michael@0 158 MP_CHECKOK( mp_init_size(&precomp[i][j][1],
michael@0 159 ECL_MAX_FIELD_SIZE_DIGITS) );
michael@0 160 }
michael@0 161 }
michael@0 162
michael@0 163 /* fill precomputation table */
michael@0 164 /* assign {k1, k2} = {a, b} such that len(a) >= len(b) */
michael@0 165 if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) {
michael@0 166 a = k2;
michael@0 167 b = k1;
michael@0 168 if (group->meth->field_enc) {
michael@0 169 MP_CHECKOK(group->meth->
michael@0 170 field_enc(px, &precomp[1][0][0], group->meth));
michael@0 171 MP_CHECKOK(group->meth->
michael@0 172 field_enc(py, &precomp[1][0][1], group->meth));
michael@0 173 } else {
michael@0 174 MP_CHECKOK(mp_copy(px, &precomp[1][0][0]));
michael@0 175 MP_CHECKOK(mp_copy(py, &precomp[1][0][1]));
michael@0 176 }
michael@0 177 MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0]));
michael@0 178 MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1]));
michael@0 179 } else {
michael@0 180 a = k1;
michael@0 181 b = k2;
michael@0 182 MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0]));
michael@0 183 MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1]));
michael@0 184 if (group->meth->field_enc) {
michael@0 185 MP_CHECKOK(group->meth->
michael@0 186 field_enc(px, &precomp[0][1][0], group->meth));
michael@0 187 MP_CHECKOK(group->meth->
michael@0 188 field_enc(py, &precomp[0][1][1], group->meth));
michael@0 189 } else {
michael@0 190 MP_CHECKOK(mp_copy(px, &precomp[0][1][0]));
michael@0 191 MP_CHECKOK(mp_copy(py, &precomp[0][1][1]));
michael@0 192 }
michael@0 193 }
michael@0 194 /* precompute [*][0][*] */
michael@0 195 mp_zero(&precomp[0][0][0]);
michael@0 196 mp_zero(&precomp[0][0][1]);
michael@0 197 MP_CHECKOK(group->
michael@0 198 point_dbl(&precomp[1][0][0], &precomp[1][0][1],
michael@0 199 &precomp[2][0][0], &precomp[2][0][1], group));
michael@0 200 MP_CHECKOK(group->
michael@0 201 point_add(&precomp[1][0][0], &precomp[1][0][1],
michael@0 202 &precomp[2][0][0], &precomp[2][0][1],
michael@0 203 &precomp[3][0][0], &precomp[3][0][1], group));
michael@0 204 /* precompute [*][1][*] */
michael@0 205 for (i = 1; i < 4; i++) {
michael@0 206 MP_CHECKOK(group->
michael@0 207 point_add(&precomp[0][1][0], &precomp[0][1][1],
michael@0 208 &precomp[i][0][0], &precomp[i][0][1],
michael@0 209 &precomp[i][1][0], &precomp[i][1][1], group));
michael@0 210 }
michael@0 211 /* precompute [*][2][*] */
michael@0 212 MP_CHECKOK(group->
michael@0 213 point_dbl(&precomp[0][1][0], &precomp[0][1][1],
michael@0 214 &precomp[0][2][0], &precomp[0][2][1], group));
michael@0 215 for (i = 1; i < 4; i++) {
michael@0 216 MP_CHECKOK(group->
michael@0 217 point_add(&precomp[0][2][0], &precomp[0][2][1],
michael@0 218 &precomp[i][0][0], &precomp[i][0][1],
michael@0 219 &precomp[i][2][0], &precomp[i][2][1], group));
michael@0 220 }
michael@0 221 /* precompute [*][3][*] */
michael@0 222 MP_CHECKOK(group->
michael@0 223 point_add(&precomp[0][1][0], &precomp[0][1][1],
michael@0 224 &precomp[0][2][0], &precomp[0][2][1],
michael@0 225 &precomp[0][3][0], &precomp[0][3][1], group));
michael@0 226 for (i = 1; i < 4; i++) {
michael@0 227 MP_CHECKOK(group->
michael@0 228 point_add(&precomp[0][3][0], &precomp[0][3][1],
michael@0 229 &precomp[i][0][0], &precomp[i][0][1],
michael@0 230 &precomp[i][3][0], &precomp[i][3][1], group));
michael@0 231 }
michael@0 232
michael@0 233 d = (mpl_significant_bits(a) + 1) / 2;
michael@0 234
michael@0 235 /* R = inf */
michael@0 236 mp_zero(rx);
michael@0 237 mp_zero(ry);
michael@0 238
michael@0 239 for (i = d - 1; i >= 0; i--) {
michael@0 240 ai = MP_GET_BIT(a, 2 * i + 1);
michael@0 241 ai <<= 1;
michael@0 242 ai |= MP_GET_BIT(a, 2 * i);
michael@0 243 bi = MP_GET_BIT(b, 2 * i + 1);
michael@0 244 bi <<= 1;
michael@0 245 bi |= MP_GET_BIT(b, 2 * i);
michael@0 246 /* R = 2^2 * R */
michael@0 247 MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group));
michael@0 248 MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group));
michael@0 249 /* R = R + (ai * A + bi * B) */
michael@0 250 MP_CHECKOK(group->
michael@0 251 point_add(rx, ry, &precomp[ai][bi][0],
michael@0 252 &precomp[ai][bi][1], rx, ry, group));
michael@0 253 }
michael@0 254
michael@0 255 if (group->meth->field_dec) {
michael@0 256 MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
michael@0 257 MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
michael@0 258 }
michael@0 259
michael@0 260 CLEANUP:
michael@0 261 for (i = 0; i < 4; i++) {
michael@0 262 for (j = 0; j < 4; j++) {
michael@0 263 mp_clear(&precomp[i][j][0]);
michael@0 264 mp_clear(&precomp[i][j][1]);
michael@0 265 }
michael@0 266 }
michael@0 267 return res;
michael@0 268 }
michael@0 269
michael@0 270 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
michael@0 271 * k2 * P(x, y), where G is the generator (base point) of the group of
michael@0 272 * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
michael@0 273 * Input and output values are assumed to be NOT field-encoded. */
michael@0 274 mp_err
michael@0 275 ECPoints_mul(const ECGroup *group, const mp_int *k1, const mp_int *k2,
michael@0 276 const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry)
michael@0 277 {
michael@0 278 mp_err res = MP_OKAY;
michael@0 279 mp_int k1t, k2t;
michael@0 280 const mp_int *k1p, *k2p;
michael@0 281
michael@0 282 MP_DIGITS(&k1t) = 0;
michael@0 283 MP_DIGITS(&k2t) = 0;
michael@0 284
michael@0 285 ARGCHK(group != NULL, MP_BADARG);
michael@0 286
michael@0 287 /* want scalar to be less than or equal to group order */
michael@0 288 if (k1 != NULL) {
michael@0 289 if (mp_cmp(k1, &group->order) >= 0) {
michael@0 290 MP_CHECKOK(mp_init(&k1t));
michael@0 291 MP_CHECKOK(mp_mod(k1, &group->order, &k1t));
michael@0 292 k1p = &k1t;
michael@0 293 } else {
michael@0 294 k1p = k1;
michael@0 295 }
michael@0 296 } else {
michael@0 297 k1p = k1;
michael@0 298 }
michael@0 299 if (k2 != NULL) {
michael@0 300 if (mp_cmp(k2, &group->order) >= 0) {
michael@0 301 MP_CHECKOK(mp_init(&k2t));
michael@0 302 MP_CHECKOK(mp_mod(k2, &group->order, &k2t));
michael@0 303 k2p = &k2t;
michael@0 304 } else {
michael@0 305 k2p = k2;
michael@0 306 }
michael@0 307 } else {
michael@0 308 k2p = k2;
michael@0 309 }
michael@0 310
michael@0 311 /* if points_mul is defined, then use it */
michael@0 312 if (group->points_mul) {
michael@0 313 res = group->points_mul(k1p, k2p, px, py, rx, ry, group);
michael@0 314 } else {
michael@0 315 res = ec_pts_mul_simul_w2(k1p, k2p, px, py, rx, ry, group);
michael@0 316 }
michael@0 317
michael@0 318 CLEANUP:
michael@0 319 mp_clear(&k1t);
michael@0 320 mp_clear(&k2t);
michael@0 321 return res;
michael@0 322 }

mercurial