security/nss/lib/freebl/ecl/ecp_jm.c

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/security/nss/lib/freebl/ecl/ecp_jm.c	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,289 @@
     1.4 +/* This Source Code Form is subject to the terms of the Mozilla Public
     1.5 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.6 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     1.7 +
     1.8 +#include "ecp.h"
     1.9 +#include "ecl-priv.h"
    1.10 +#include "mplogic.h"
    1.11 +#include <stdlib.h>
    1.12 +
    1.13 +#define MAX_SCRATCH 6
    1.14 +
    1.15 +/* Computes R = 2P.  Elliptic curve points P and R can be identical.  Uses 
    1.16 + * Modified Jacobian coordinates.
    1.17 + *
    1.18 + * Assumes input is already field-encoded using field_enc, and returns 
    1.19 + * output that is still field-encoded.
    1.20 + *
    1.21 + */
    1.22 +mp_err
    1.23 +ec_GFp_pt_dbl_jm(const mp_int *px, const mp_int *py, const mp_int *pz,
    1.24 +				 const mp_int *paz4, mp_int *rx, mp_int *ry, mp_int *rz,
    1.25 +				 mp_int *raz4, mp_int scratch[], const ECGroup *group)
    1.26 +{
    1.27 +	mp_err res = MP_OKAY;
    1.28 +	mp_int *t0, *t1, *M, *S;
    1.29 +
    1.30 +	t0 = &scratch[0];
    1.31 +	t1 = &scratch[1];
    1.32 +	M = &scratch[2];
    1.33 +	S = &scratch[3];
    1.34 +
    1.35 +#if MAX_SCRATCH < 4
    1.36 +#error "Scratch array defined too small "
    1.37 +#endif
    1.38 +
    1.39 +	/* Check for point at infinity */
    1.40 +	if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
    1.41 +		/* Set r = pt at infinity by setting rz = 0 */
    1.42 +
    1.43 +		MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
    1.44 +		goto CLEANUP;
    1.45 +	}
    1.46 +
    1.47 +	/* M = 3 (px^2) + a*(pz^4) */
    1.48 +	MP_CHECKOK(group->meth->field_sqr(px, t0, group->meth));
    1.49 +	MP_CHECKOK(group->meth->field_add(t0, t0, M, group->meth));
    1.50 +	MP_CHECKOK(group->meth->field_add(t0, M, t0, group->meth));
    1.51 +	MP_CHECKOK(group->meth->field_add(t0, paz4, M, group->meth));
    1.52 +
    1.53 +	/* rz = 2 * py * pz */
    1.54 +	MP_CHECKOK(group->meth->field_mul(py, pz, S, group->meth));
    1.55 +	MP_CHECKOK(group->meth->field_add(S, S, rz, group->meth));
    1.56 +
    1.57 +	/* t0 = 2y^2 , t1 = 8y^4 */
    1.58 +	MP_CHECKOK(group->meth->field_sqr(py, t0, group->meth));
    1.59 +	MP_CHECKOK(group->meth->field_add(t0, t0, t0, group->meth));
    1.60 +	MP_CHECKOK(group->meth->field_sqr(t0, t1, group->meth));
    1.61 +	MP_CHECKOK(group->meth->field_add(t1, t1, t1, group->meth));
    1.62 +
    1.63 +	/* S = 4 * px * py^2 = 2 * px * t0 */
    1.64 +	MP_CHECKOK(group->meth->field_mul(px, t0, S, group->meth));
    1.65 +	MP_CHECKOK(group->meth->field_add(S, S, S, group->meth));
    1.66 +
    1.67 +
    1.68 +	/* rx = M^2 - 2S */
    1.69 +	MP_CHECKOK(group->meth->field_sqr(M, rx, group->meth));
    1.70 +	MP_CHECKOK(group->meth->field_sub(rx, S, rx, group->meth));
    1.71 +	MP_CHECKOK(group->meth->field_sub(rx, S, rx, group->meth));
    1.72 +
    1.73 +	/* ry = M * (S - rx) - t1 */
    1.74 +	MP_CHECKOK(group->meth->field_sub(S, rx, S, group->meth));
    1.75 +	MP_CHECKOK(group->meth->field_mul(S, M, ry, group->meth));
    1.76 +	MP_CHECKOK(group->meth->field_sub(ry, t1, ry, group->meth));
    1.77 +
    1.78 +	/* ra*z^4 = 2*t1*(apz4) */
    1.79 +	MP_CHECKOK(group->meth->field_mul(paz4, t1, raz4, group->meth));
    1.80 +	MP_CHECKOK(group->meth->field_add(raz4, raz4, raz4, group->meth));
    1.81 +
    1.82 +
    1.83 +  CLEANUP:
    1.84 +	return res;
    1.85 +}
    1.86 +
    1.87 +/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
    1.88 + * (qx, qy, 1).  Elliptic curve points P, Q, and R can all be identical.
    1.89 + * Uses mixed Modified_Jacobian-affine coordinates. Assumes input is
    1.90 + * already field-encoded using field_enc, and returns output that is still
    1.91 + * field-encoded. */
    1.92 +mp_err
    1.93 +ec_GFp_pt_add_jm_aff(const mp_int *px, const mp_int *py, const mp_int *pz,
    1.94 +					 const mp_int *paz4, const mp_int *qx,
    1.95 +					 const mp_int *qy, mp_int *rx, mp_int *ry, mp_int *rz,
    1.96 +					 mp_int *raz4, mp_int scratch[], const ECGroup *group)
    1.97 +{
    1.98 +	mp_err res = MP_OKAY;
    1.99 +	mp_int *A, *B, *C, *D, *C2, *C3;
   1.100 +
   1.101 +	A = &scratch[0];
   1.102 +	B = &scratch[1];
   1.103 +	C = &scratch[2];
   1.104 +	D = &scratch[3];
   1.105 +	C2 = &scratch[4];
   1.106 +	C3 = &scratch[5];
   1.107 +
   1.108 +#if MAX_SCRATCH < 6
   1.109 +#error "Scratch array defined too small "
   1.110 +#endif
   1.111 +
   1.112 +	/* If either P or Q is the point at infinity, then return the other
   1.113 +	 * point */
   1.114 +	if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
   1.115 +		MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group));
   1.116 +		MP_CHECKOK(group->meth->field_sqr(rz, raz4, group->meth));
   1.117 +		MP_CHECKOK(group->meth->field_sqr(raz4, raz4, group->meth));
   1.118 +		MP_CHECKOK(group->meth->
   1.119 +				   field_mul(raz4, &group->curvea, raz4, group->meth));
   1.120 +		goto CLEANUP;
   1.121 +	}
   1.122 +	if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) {
   1.123 +		MP_CHECKOK(mp_copy(px, rx));
   1.124 +		MP_CHECKOK(mp_copy(py, ry));
   1.125 +		MP_CHECKOK(mp_copy(pz, rz));
   1.126 +		MP_CHECKOK(mp_copy(paz4, raz4));
   1.127 +		goto CLEANUP;
   1.128 +	}
   1.129 +
   1.130 +	/* A = qx * pz^2, B = qy * pz^3 */
   1.131 +	MP_CHECKOK(group->meth->field_sqr(pz, A, group->meth));
   1.132 +	MP_CHECKOK(group->meth->field_mul(A, pz, B, group->meth));
   1.133 +	MP_CHECKOK(group->meth->field_mul(A, qx, A, group->meth));
   1.134 +	MP_CHECKOK(group->meth->field_mul(B, qy, B, group->meth));
   1.135 +
   1.136 +	/* C = A - px, D = B - py */
   1.137 +	MP_CHECKOK(group->meth->field_sub(A, px, C, group->meth));
   1.138 +	MP_CHECKOK(group->meth->field_sub(B, py, D, group->meth));
   1.139 +
   1.140 +	/* C2 = C^2, C3 = C^3 */
   1.141 +	MP_CHECKOK(group->meth->field_sqr(C, C2, group->meth));
   1.142 +	MP_CHECKOK(group->meth->field_mul(C, C2, C3, group->meth));
   1.143 +
   1.144 +	/* rz = pz * C */
   1.145 +	MP_CHECKOK(group->meth->field_mul(pz, C, rz, group->meth));
   1.146 +
   1.147 +	/* C = px * C^2 */
   1.148 +	MP_CHECKOK(group->meth->field_mul(px, C2, C, group->meth));
   1.149 +	/* A = D^2 */
   1.150 +	MP_CHECKOK(group->meth->field_sqr(D, A, group->meth));
   1.151 +
   1.152 +	/* rx = D^2 - (C^3 + 2 * (px * C^2)) */
   1.153 +	MP_CHECKOK(group->meth->field_add(C, C, rx, group->meth));
   1.154 +	MP_CHECKOK(group->meth->field_add(C3, rx, rx, group->meth));
   1.155 +	MP_CHECKOK(group->meth->field_sub(A, rx, rx, group->meth));
   1.156 +
   1.157 +	/* C3 = py * C^3 */
   1.158 +	MP_CHECKOK(group->meth->field_mul(py, C3, C3, group->meth));
   1.159 +
   1.160 +	/* ry = D * (px * C^2 - rx) - py * C^3 */
   1.161 +	MP_CHECKOK(group->meth->field_sub(C, rx, ry, group->meth));
   1.162 +	MP_CHECKOK(group->meth->field_mul(D, ry, ry, group->meth));
   1.163 +	MP_CHECKOK(group->meth->field_sub(ry, C3, ry, group->meth));
   1.164 +
   1.165 +	/* raz4 = a * rz^4 */
   1.166 +	MP_CHECKOK(group->meth->field_sqr(rz, raz4, group->meth));
   1.167 +	MP_CHECKOK(group->meth->field_sqr(raz4, raz4, group->meth));
   1.168 +	MP_CHECKOK(group->meth->
   1.169 +			   field_mul(raz4, &group->curvea, raz4, group->meth));
   1.170 +CLEANUP:
   1.171 +	return res;
   1.172 +}
   1.173 +
   1.174 +/* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic
   1.175 + * curve points P and R can be identical. Uses mixed Modified-Jacobian
   1.176 + * co-ordinates for doubling and Chudnovsky Jacobian coordinates for
   1.177 + * additions. Assumes input is already field-encoded using field_enc, and
   1.178 + * returns output that is still field-encoded. Uses 5-bit window NAF
   1.179 + * method (algorithm 11) for scalar-point multiplication from Brown,
   1.180 + * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic 
   1.181 + * Curves Over Prime Fields. */
   1.182 +mp_err
   1.183 +ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py,
   1.184 +					  mp_int *rx, mp_int *ry, const ECGroup *group)
   1.185 +{
   1.186 +	mp_err res = MP_OKAY;
   1.187 +	mp_int precomp[16][2], rz, tpx, tpy;
   1.188 +	mp_int raz4;
   1.189 +	mp_int scratch[MAX_SCRATCH];
   1.190 +	signed char *naf = NULL;
   1.191 +	int i, orderBitSize;
   1.192 +
   1.193 +	MP_DIGITS(&rz) = 0;
   1.194 +	MP_DIGITS(&raz4) = 0;
   1.195 +	MP_DIGITS(&tpx) = 0;
   1.196 +	MP_DIGITS(&tpy) = 0;
   1.197 +	for (i = 0; i < 16; i++) {
   1.198 +		MP_DIGITS(&precomp[i][0]) = 0;
   1.199 +		MP_DIGITS(&precomp[i][1]) = 0;
   1.200 +	}
   1.201 +	for (i = 0; i < MAX_SCRATCH; i++) {
   1.202 +		MP_DIGITS(&scratch[i]) = 0;
   1.203 +	}
   1.204 +
   1.205 +	ARGCHK(group != NULL, MP_BADARG);
   1.206 +	ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG);
   1.207 +
   1.208 +	/* initialize precomputation table */
   1.209 +	MP_CHECKOK(mp_init(&tpx));
   1.210 +	MP_CHECKOK(mp_init(&tpy));;
   1.211 +	MP_CHECKOK(mp_init(&rz));
   1.212 +	MP_CHECKOK(mp_init(&raz4));
   1.213 +
   1.214 +	for (i = 0; i < 16; i++) {
   1.215 +		MP_CHECKOK(mp_init(&precomp[i][0]));
   1.216 +		MP_CHECKOK(mp_init(&precomp[i][1]));
   1.217 +	}
   1.218 +	for (i = 0; i < MAX_SCRATCH; i++) {
   1.219 +		MP_CHECKOK(mp_init(&scratch[i]));
   1.220 +	}
   1.221 +
   1.222 +	/* Set out[8] = P */
   1.223 +	MP_CHECKOK(mp_copy(px, &precomp[8][0]));
   1.224 +	MP_CHECKOK(mp_copy(py, &precomp[8][1]));
   1.225 +
   1.226 +	/* Set (tpx, tpy) = 2P */
   1.227 +	MP_CHECKOK(group->
   1.228 +			   point_dbl(&precomp[8][0], &precomp[8][1], &tpx, &tpy,
   1.229 +						 group));
   1.230 +
   1.231 +	/* Set 3P, 5P, ..., 15P */
   1.232 +	for (i = 8; i < 15; i++) {
   1.233 +		MP_CHECKOK(group->
   1.234 +				   point_add(&precomp[i][0], &precomp[i][1], &tpx, &tpy,
   1.235 +							 &precomp[i + 1][0], &precomp[i + 1][1],
   1.236 +							 group));
   1.237 +	}
   1.238 +
   1.239 +	/* Set -15P, -13P, ..., -P */
   1.240 +	for (i = 0; i < 8; i++) {
   1.241 +		MP_CHECKOK(mp_copy(&precomp[15 - i][0], &precomp[i][0]));
   1.242 +		MP_CHECKOK(group->meth->
   1.243 +				   field_neg(&precomp[15 - i][1], &precomp[i][1],
   1.244 +							 group->meth));
   1.245 +	}
   1.246 +
   1.247 +	/* R = inf */
   1.248 +	MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));
   1.249 +
   1.250 +	orderBitSize = mpl_significant_bits(&group->order);
   1.251 +
   1.252 +	/* Allocate memory for NAF */
   1.253 +	naf = (signed char *) malloc(sizeof(signed char) * (orderBitSize + 1));
   1.254 +	if (naf == NULL) {
   1.255 +		res = MP_MEM;
   1.256 +		goto CLEANUP;
   1.257 +	}
   1.258 +
   1.259 +	/* Compute 5NAF */
   1.260 +	ec_compute_wNAF(naf, orderBitSize, n, 5);
   1.261 +
   1.262 +	/* wNAF method */
   1.263 +	for (i = orderBitSize; i >= 0; i--) {
   1.264 +		/* R = 2R */
   1.265 +		ec_GFp_pt_dbl_jm(rx, ry, &rz, &raz4, rx, ry, &rz, 
   1.266 +					     &raz4, scratch, group);
   1.267 +		if (naf[i] != 0) {
   1.268 +			ec_GFp_pt_add_jm_aff(rx, ry, &rz, &raz4,
   1.269 +								 &precomp[(naf[i] + 15) / 2][0],
   1.270 +								 &precomp[(naf[i] + 15) / 2][1], rx, ry,
   1.271 +								 &rz, &raz4, scratch, group);
   1.272 +		}
   1.273 +	}
   1.274 +
   1.275 +	/* convert result S to affine coordinates */
   1.276 +	MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));
   1.277 +
   1.278 +  CLEANUP:
   1.279 +	for (i = 0; i < MAX_SCRATCH; i++) {
   1.280 +		mp_clear(&scratch[i]);
   1.281 +	}
   1.282 +	for (i = 0; i < 16; i++) {
   1.283 +		mp_clear(&precomp[i][0]);
   1.284 +		mp_clear(&precomp[i][1]);
   1.285 +	}
   1.286 +	mp_clear(&tpx);
   1.287 +	mp_clear(&tpy);
   1.288 +	mp_clear(&rz);
   1.289 +	mp_clear(&raz4);
   1.290 +	free(naf);
   1.291 +	return res;
   1.292 +}

mercurial