security/nss/lib/freebl/ecl/ecp_jm.c

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

michael@0 1 /* This Source Code Form is subject to the terms of the Mozilla Public
michael@0 2 * License, v. 2.0. If a copy of the MPL was not distributed with this
michael@0 3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
michael@0 4
michael@0 5 #include "ecp.h"
michael@0 6 #include "ecl-priv.h"
michael@0 7 #include "mplogic.h"
michael@0 8 #include <stdlib.h>
michael@0 9
michael@0 10 #define MAX_SCRATCH 6
michael@0 11
michael@0 12 /* Computes R = 2P. Elliptic curve points P and R can be identical. Uses
michael@0 13 * Modified Jacobian coordinates.
michael@0 14 *
michael@0 15 * Assumes input is already field-encoded using field_enc, and returns
michael@0 16 * output that is still field-encoded.
michael@0 17 *
michael@0 18 */
michael@0 19 mp_err
michael@0 20 ec_GFp_pt_dbl_jm(const mp_int *px, const mp_int *py, const mp_int *pz,
michael@0 21 const mp_int *paz4, mp_int *rx, mp_int *ry, mp_int *rz,
michael@0 22 mp_int *raz4, mp_int scratch[], const ECGroup *group)
michael@0 23 {
michael@0 24 mp_err res = MP_OKAY;
michael@0 25 mp_int *t0, *t1, *M, *S;
michael@0 26
michael@0 27 t0 = &scratch[0];
michael@0 28 t1 = &scratch[1];
michael@0 29 M = &scratch[2];
michael@0 30 S = &scratch[3];
michael@0 31
michael@0 32 #if MAX_SCRATCH < 4
michael@0 33 #error "Scratch array defined too small "
michael@0 34 #endif
michael@0 35
michael@0 36 /* Check for point at infinity */
michael@0 37 if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
michael@0 38 /* Set r = pt at infinity by setting rz = 0 */
michael@0 39
michael@0 40 MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
michael@0 41 goto CLEANUP;
michael@0 42 }
michael@0 43
michael@0 44 /* M = 3 (px^2) + a*(pz^4) */
michael@0 45 MP_CHECKOK(group->meth->field_sqr(px, t0, group->meth));
michael@0 46 MP_CHECKOK(group->meth->field_add(t0, t0, M, group->meth));
michael@0 47 MP_CHECKOK(group->meth->field_add(t0, M, t0, group->meth));
michael@0 48 MP_CHECKOK(group->meth->field_add(t0, paz4, M, group->meth));
michael@0 49
michael@0 50 /* rz = 2 * py * pz */
michael@0 51 MP_CHECKOK(group->meth->field_mul(py, pz, S, group->meth));
michael@0 52 MP_CHECKOK(group->meth->field_add(S, S, rz, group->meth));
michael@0 53
michael@0 54 /* t0 = 2y^2 , t1 = 8y^4 */
michael@0 55 MP_CHECKOK(group->meth->field_sqr(py, t0, group->meth));
michael@0 56 MP_CHECKOK(group->meth->field_add(t0, t0, t0, group->meth));
michael@0 57 MP_CHECKOK(group->meth->field_sqr(t0, t1, group->meth));
michael@0 58 MP_CHECKOK(group->meth->field_add(t1, t1, t1, group->meth));
michael@0 59
michael@0 60 /* S = 4 * px * py^2 = 2 * px * t0 */
michael@0 61 MP_CHECKOK(group->meth->field_mul(px, t0, S, group->meth));
michael@0 62 MP_CHECKOK(group->meth->field_add(S, S, S, group->meth));
michael@0 63
michael@0 64
michael@0 65 /* rx = M^2 - 2S */
michael@0 66 MP_CHECKOK(group->meth->field_sqr(M, rx, group->meth));
michael@0 67 MP_CHECKOK(group->meth->field_sub(rx, S, rx, group->meth));
michael@0 68 MP_CHECKOK(group->meth->field_sub(rx, S, rx, group->meth));
michael@0 69
michael@0 70 /* ry = M * (S - rx) - t1 */
michael@0 71 MP_CHECKOK(group->meth->field_sub(S, rx, S, group->meth));
michael@0 72 MP_CHECKOK(group->meth->field_mul(S, M, ry, group->meth));
michael@0 73 MP_CHECKOK(group->meth->field_sub(ry, t1, ry, group->meth));
michael@0 74
michael@0 75 /* ra*z^4 = 2*t1*(apz4) */
michael@0 76 MP_CHECKOK(group->meth->field_mul(paz4, t1, raz4, group->meth));
michael@0 77 MP_CHECKOK(group->meth->field_add(raz4, raz4, raz4, group->meth));
michael@0 78
michael@0 79
michael@0 80 CLEANUP:
michael@0 81 return res;
michael@0 82 }
michael@0 83
michael@0 84 /* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
michael@0 85 * (qx, qy, 1). Elliptic curve points P, Q, and R can all be identical.
michael@0 86 * Uses mixed Modified_Jacobian-affine coordinates. Assumes input is
michael@0 87 * already field-encoded using field_enc, and returns output that is still
michael@0 88 * field-encoded. */
michael@0 89 mp_err
michael@0 90 ec_GFp_pt_add_jm_aff(const mp_int *px, const mp_int *py, const mp_int *pz,
michael@0 91 const mp_int *paz4, const mp_int *qx,
michael@0 92 const mp_int *qy, mp_int *rx, mp_int *ry, mp_int *rz,
michael@0 93 mp_int *raz4, mp_int scratch[], const ECGroup *group)
michael@0 94 {
michael@0 95 mp_err res = MP_OKAY;
michael@0 96 mp_int *A, *B, *C, *D, *C2, *C3;
michael@0 97
michael@0 98 A = &scratch[0];
michael@0 99 B = &scratch[1];
michael@0 100 C = &scratch[2];
michael@0 101 D = &scratch[3];
michael@0 102 C2 = &scratch[4];
michael@0 103 C3 = &scratch[5];
michael@0 104
michael@0 105 #if MAX_SCRATCH < 6
michael@0 106 #error "Scratch array defined too small "
michael@0 107 #endif
michael@0 108
michael@0 109 /* If either P or Q is the point at infinity, then return the other
michael@0 110 * point */
michael@0 111 if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
michael@0 112 MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group));
michael@0 113 MP_CHECKOK(group->meth->field_sqr(rz, raz4, group->meth));
michael@0 114 MP_CHECKOK(group->meth->field_sqr(raz4, raz4, group->meth));
michael@0 115 MP_CHECKOK(group->meth->
michael@0 116 field_mul(raz4, &group->curvea, raz4, group->meth));
michael@0 117 goto CLEANUP;
michael@0 118 }
michael@0 119 if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) {
michael@0 120 MP_CHECKOK(mp_copy(px, rx));
michael@0 121 MP_CHECKOK(mp_copy(py, ry));
michael@0 122 MP_CHECKOK(mp_copy(pz, rz));
michael@0 123 MP_CHECKOK(mp_copy(paz4, raz4));
michael@0 124 goto CLEANUP;
michael@0 125 }
michael@0 126
michael@0 127 /* A = qx * pz^2, B = qy * pz^3 */
michael@0 128 MP_CHECKOK(group->meth->field_sqr(pz, A, group->meth));
michael@0 129 MP_CHECKOK(group->meth->field_mul(A, pz, B, group->meth));
michael@0 130 MP_CHECKOK(group->meth->field_mul(A, qx, A, group->meth));
michael@0 131 MP_CHECKOK(group->meth->field_mul(B, qy, B, group->meth));
michael@0 132
michael@0 133 /* C = A - px, D = B - py */
michael@0 134 MP_CHECKOK(group->meth->field_sub(A, px, C, group->meth));
michael@0 135 MP_CHECKOK(group->meth->field_sub(B, py, D, group->meth));
michael@0 136
michael@0 137 /* C2 = C^2, C3 = C^3 */
michael@0 138 MP_CHECKOK(group->meth->field_sqr(C, C2, group->meth));
michael@0 139 MP_CHECKOK(group->meth->field_mul(C, C2, C3, group->meth));
michael@0 140
michael@0 141 /* rz = pz * C */
michael@0 142 MP_CHECKOK(group->meth->field_mul(pz, C, rz, group->meth));
michael@0 143
michael@0 144 /* C = px * C^2 */
michael@0 145 MP_CHECKOK(group->meth->field_mul(px, C2, C, group->meth));
michael@0 146 /* A = D^2 */
michael@0 147 MP_CHECKOK(group->meth->field_sqr(D, A, group->meth));
michael@0 148
michael@0 149 /* rx = D^2 - (C^3 + 2 * (px * C^2)) */
michael@0 150 MP_CHECKOK(group->meth->field_add(C, C, rx, group->meth));
michael@0 151 MP_CHECKOK(group->meth->field_add(C3, rx, rx, group->meth));
michael@0 152 MP_CHECKOK(group->meth->field_sub(A, rx, rx, group->meth));
michael@0 153
michael@0 154 /* C3 = py * C^3 */
michael@0 155 MP_CHECKOK(group->meth->field_mul(py, C3, C3, group->meth));
michael@0 156
michael@0 157 /* ry = D * (px * C^2 - rx) - py * C^3 */
michael@0 158 MP_CHECKOK(group->meth->field_sub(C, rx, ry, group->meth));
michael@0 159 MP_CHECKOK(group->meth->field_mul(D, ry, ry, group->meth));
michael@0 160 MP_CHECKOK(group->meth->field_sub(ry, C3, ry, group->meth));
michael@0 161
michael@0 162 /* raz4 = a * rz^4 */
michael@0 163 MP_CHECKOK(group->meth->field_sqr(rz, raz4, group->meth));
michael@0 164 MP_CHECKOK(group->meth->field_sqr(raz4, raz4, group->meth));
michael@0 165 MP_CHECKOK(group->meth->
michael@0 166 field_mul(raz4, &group->curvea, raz4, group->meth));
michael@0 167 CLEANUP:
michael@0 168 return res;
michael@0 169 }
michael@0 170
michael@0 171 /* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic
michael@0 172 * curve points P and R can be identical. Uses mixed Modified-Jacobian
michael@0 173 * co-ordinates for doubling and Chudnovsky Jacobian coordinates for
michael@0 174 * additions. Assumes input is already field-encoded using field_enc, and
michael@0 175 * returns output that is still field-encoded. Uses 5-bit window NAF
michael@0 176 * method (algorithm 11) for scalar-point multiplication from Brown,
michael@0 177 * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic
michael@0 178 * Curves Over Prime Fields. */
michael@0 179 mp_err
michael@0 180 ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py,
michael@0 181 mp_int *rx, mp_int *ry, const ECGroup *group)
michael@0 182 {
michael@0 183 mp_err res = MP_OKAY;
michael@0 184 mp_int precomp[16][2], rz, tpx, tpy;
michael@0 185 mp_int raz4;
michael@0 186 mp_int scratch[MAX_SCRATCH];
michael@0 187 signed char *naf = NULL;
michael@0 188 int i, orderBitSize;
michael@0 189
michael@0 190 MP_DIGITS(&rz) = 0;
michael@0 191 MP_DIGITS(&raz4) = 0;
michael@0 192 MP_DIGITS(&tpx) = 0;
michael@0 193 MP_DIGITS(&tpy) = 0;
michael@0 194 for (i = 0; i < 16; i++) {
michael@0 195 MP_DIGITS(&precomp[i][0]) = 0;
michael@0 196 MP_DIGITS(&precomp[i][1]) = 0;
michael@0 197 }
michael@0 198 for (i = 0; i < MAX_SCRATCH; i++) {
michael@0 199 MP_DIGITS(&scratch[i]) = 0;
michael@0 200 }
michael@0 201
michael@0 202 ARGCHK(group != NULL, MP_BADARG);
michael@0 203 ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG);
michael@0 204
michael@0 205 /* initialize precomputation table */
michael@0 206 MP_CHECKOK(mp_init(&tpx));
michael@0 207 MP_CHECKOK(mp_init(&tpy));;
michael@0 208 MP_CHECKOK(mp_init(&rz));
michael@0 209 MP_CHECKOK(mp_init(&raz4));
michael@0 210
michael@0 211 for (i = 0; i < 16; i++) {
michael@0 212 MP_CHECKOK(mp_init(&precomp[i][0]));
michael@0 213 MP_CHECKOK(mp_init(&precomp[i][1]));
michael@0 214 }
michael@0 215 for (i = 0; i < MAX_SCRATCH; i++) {
michael@0 216 MP_CHECKOK(mp_init(&scratch[i]));
michael@0 217 }
michael@0 218
michael@0 219 /* Set out[8] = P */
michael@0 220 MP_CHECKOK(mp_copy(px, &precomp[8][0]));
michael@0 221 MP_CHECKOK(mp_copy(py, &precomp[8][1]));
michael@0 222
michael@0 223 /* Set (tpx, tpy) = 2P */
michael@0 224 MP_CHECKOK(group->
michael@0 225 point_dbl(&precomp[8][0], &precomp[8][1], &tpx, &tpy,
michael@0 226 group));
michael@0 227
michael@0 228 /* Set 3P, 5P, ..., 15P */
michael@0 229 for (i = 8; i < 15; i++) {
michael@0 230 MP_CHECKOK(group->
michael@0 231 point_add(&precomp[i][0], &precomp[i][1], &tpx, &tpy,
michael@0 232 &precomp[i + 1][0], &precomp[i + 1][1],
michael@0 233 group));
michael@0 234 }
michael@0 235
michael@0 236 /* Set -15P, -13P, ..., -P */
michael@0 237 for (i = 0; i < 8; i++) {
michael@0 238 MP_CHECKOK(mp_copy(&precomp[15 - i][0], &precomp[i][0]));
michael@0 239 MP_CHECKOK(group->meth->
michael@0 240 field_neg(&precomp[15 - i][1], &precomp[i][1],
michael@0 241 group->meth));
michael@0 242 }
michael@0 243
michael@0 244 /* R = inf */
michael@0 245 MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));
michael@0 246
michael@0 247 orderBitSize = mpl_significant_bits(&group->order);
michael@0 248
michael@0 249 /* Allocate memory for NAF */
michael@0 250 naf = (signed char *) malloc(sizeof(signed char) * (orderBitSize + 1));
michael@0 251 if (naf == NULL) {
michael@0 252 res = MP_MEM;
michael@0 253 goto CLEANUP;
michael@0 254 }
michael@0 255
michael@0 256 /* Compute 5NAF */
michael@0 257 ec_compute_wNAF(naf, orderBitSize, n, 5);
michael@0 258
michael@0 259 /* wNAF method */
michael@0 260 for (i = orderBitSize; i >= 0; i--) {
michael@0 261 /* R = 2R */
michael@0 262 ec_GFp_pt_dbl_jm(rx, ry, &rz, &raz4, rx, ry, &rz,
michael@0 263 &raz4, scratch, group);
michael@0 264 if (naf[i] != 0) {
michael@0 265 ec_GFp_pt_add_jm_aff(rx, ry, &rz, &raz4,
michael@0 266 &precomp[(naf[i] + 15) / 2][0],
michael@0 267 &precomp[(naf[i] + 15) / 2][1], rx, ry,
michael@0 268 &rz, &raz4, scratch, group);
michael@0 269 }
michael@0 270 }
michael@0 271
michael@0 272 /* convert result S to affine coordinates */
michael@0 273 MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));
michael@0 274
michael@0 275 CLEANUP:
michael@0 276 for (i = 0; i < MAX_SCRATCH; i++) {
michael@0 277 mp_clear(&scratch[i]);
michael@0 278 }
michael@0 279 for (i = 0; i < 16; i++) {
michael@0 280 mp_clear(&precomp[i][0]);
michael@0 281 mp_clear(&precomp[i][1]);
michael@0 282 }
michael@0 283 mp_clear(&tpx);
michael@0 284 mp_clear(&tpy);
michael@0 285 mp_clear(&rz);
michael@0 286 mp_clear(&raz4);
michael@0 287 free(naf);
michael@0 288 return res;
michael@0 289 }

mercurial