security/nss/lib/freebl/ecl/ecp_jm.c

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 /* This Source Code Form is subject to the terms of the Mozilla Public
     2  * License, v. 2.0. If a copy of the MPL was not distributed with this
     3  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     5 #include "ecp.h"
     6 #include "ecl-priv.h"
     7 #include "mplogic.h"
     8 #include <stdlib.h>
    10 #define MAX_SCRATCH 6
    12 /* Computes R = 2P.  Elliptic curve points P and R can be identical.  Uses 
    13  * Modified Jacobian coordinates.
    14  *
    15  * Assumes input is already field-encoded using field_enc, and returns 
    16  * output that is still field-encoded.
    17  *
    18  */
    19 mp_err
    20 ec_GFp_pt_dbl_jm(const mp_int *px, const mp_int *py, const mp_int *pz,
    21 				 const mp_int *paz4, mp_int *rx, mp_int *ry, mp_int *rz,
    22 				 mp_int *raz4, mp_int scratch[], const ECGroup *group)
    23 {
    24 	mp_err res = MP_OKAY;
    25 	mp_int *t0, *t1, *M, *S;
    27 	t0 = &scratch[0];
    28 	t1 = &scratch[1];
    29 	M = &scratch[2];
    30 	S = &scratch[3];
    32 #if MAX_SCRATCH < 4
    33 #error "Scratch array defined too small "
    34 #endif
    36 	/* Check for point at infinity */
    37 	if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
    38 		/* Set r = pt at infinity by setting rz = 0 */
    40 		MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
    41 		goto CLEANUP;
    42 	}
    44 	/* M = 3 (px^2) + a*(pz^4) */
    45 	MP_CHECKOK(group->meth->field_sqr(px, t0, group->meth));
    46 	MP_CHECKOK(group->meth->field_add(t0, t0, M, group->meth));
    47 	MP_CHECKOK(group->meth->field_add(t0, M, t0, group->meth));
    48 	MP_CHECKOK(group->meth->field_add(t0, paz4, M, group->meth));
    50 	/* rz = 2 * py * pz */
    51 	MP_CHECKOK(group->meth->field_mul(py, pz, S, group->meth));
    52 	MP_CHECKOK(group->meth->field_add(S, S, rz, group->meth));
    54 	/* t0 = 2y^2 , t1 = 8y^4 */
    55 	MP_CHECKOK(group->meth->field_sqr(py, t0, group->meth));
    56 	MP_CHECKOK(group->meth->field_add(t0, t0, t0, group->meth));
    57 	MP_CHECKOK(group->meth->field_sqr(t0, t1, group->meth));
    58 	MP_CHECKOK(group->meth->field_add(t1, t1, t1, group->meth));
    60 	/* S = 4 * px * py^2 = 2 * px * t0 */
    61 	MP_CHECKOK(group->meth->field_mul(px, t0, S, group->meth));
    62 	MP_CHECKOK(group->meth->field_add(S, S, S, group->meth));
    65 	/* rx = M^2 - 2S */
    66 	MP_CHECKOK(group->meth->field_sqr(M, rx, group->meth));
    67 	MP_CHECKOK(group->meth->field_sub(rx, S, rx, group->meth));
    68 	MP_CHECKOK(group->meth->field_sub(rx, S, rx, group->meth));
    70 	/* ry = M * (S - rx) - t1 */
    71 	MP_CHECKOK(group->meth->field_sub(S, rx, S, group->meth));
    72 	MP_CHECKOK(group->meth->field_mul(S, M, ry, group->meth));
    73 	MP_CHECKOK(group->meth->field_sub(ry, t1, ry, group->meth));
    75 	/* ra*z^4 = 2*t1*(apz4) */
    76 	MP_CHECKOK(group->meth->field_mul(paz4, t1, raz4, group->meth));
    77 	MP_CHECKOK(group->meth->field_add(raz4, raz4, raz4, group->meth));
    80   CLEANUP:
    81 	return res;
    82 }
    84 /* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
    85  * (qx, qy, 1).  Elliptic curve points P, Q, and R can all be identical.
    86  * Uses mixed Modified_Jacobian-affine coordinates. Assumes input is
    87  * already field-encoded using field_enc, and returns output that is still
    88  * field-encoded. */
    89 mp_err
    90 ec_GFp_pt_add_jm_aff(const mp_int *px, const mp_int *py, const mp_int *pz,
    91 					 const mp_int *paz4, const mp_int *qx,
    92 					 const mp_int *qy, mp_int *rx, mp_int *ry, mp_int *rz,
    93 					 mp_int *raz4, mp_int scratch[], const ECGroup *group)
    94 {
    95 	mp_err res = MP_OKAY;
    96 	mp_int *A, *B, *C, *D, *C2, *C3;
    98 	A = &scratch[0];
    99 	B = &scratch[1];
   100 	C = &scratch[2];
   101 	D = &scratch[3];
   102 	C2 = &scratch[4];
   103 	C3 = &scratch[5];
   105 #if MAX_SCRATCH < 6
   106 #error "Scratch array defined too small "
   107 #endif
   109 	/* If either P or Q is the point at infinity, then return the other
   110 	 * point */
   111 	if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
   112 		MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group));
   113 		MP_CHECKOK(group->meth->field_sqr(rz, raz4, group->meth));
   114 		MP_CHECKOK(group->meth->field_sqr(raz4, raz4, group->meth));
   115 		MP_CHECKOK(group->meth->
   116 				   field_mul(raz4, &group->curvea, raz4, group->meth));
   117 		goto CLEANUP;
   118 	}
   119 	if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) {
   120 		MP_CHECKOK(mp_copy(px, rx));
   121 		MP_CHECKOK(mp_copy(py, ry));
   122 		MP_CHECKOK(mp_copy(pz, rz));
   123 		MP_CHECKOK(mp_copy(paz4, raz4));
   124 		goto CLEANUP;
   125 	}
   127 	/* A = qx * pz^2, B = qy * pz^3 */
   128 	MP_CHECKOK(group->meth->field_sqr(pz, A, group->meth));
   129 	MP_CHECKOK(group->meth->field_mul(A, pz, B, group->meth));
   130 	MP_CHECKOK(group->meth->field_mul(A, qx, A, group->meth));
   131 	MP_CHECKOK(group->meth->field_mul(B, qy, B, group->meth));
   133 	/* C = A - px, D = B - py */
   134 	MP_CHECKOK(group->meth->field_sub(A, px, C, group->meth));
   135 	MP_CHECKOK(group->meth->field_sub(B, py, D, group->meth));
   137 	/* C2 = C^2, C3 = C^3 */
   138 	MP_CHECKOK(group->meth->field_sqr(C, C2, group->meth));
   139 	MP_CHECKOK(group->meth->field_mul(C, C2, C3, group->meth));
   141 	/* rz = pz * C */
   142 	MP_CHECKOK(group->meth->field_mul(pz, C, rz, group->meth));
   144 	/* C = px * C^2 */
   145 	MP_CHECKOK(group->meth->field_mul(px, C2, C, group->meth));
   146 	/* A = D^2 */
   147 	MP_CHECKOK(group->meth->field_sqr(D, A, group->meth));
   149 	/* rx = D^2 - (C^3 + 2 * (px * C^2)) */
   150 	MP_CHECKOK(group->meth->field_add(C, C, rx, group->meth));
   151 	MP_CHECKOK(group->meth->field_add(C3, rx, rx, group->meth));
   152 	MP_CHECKOK(group->meth->field_sub(A, rx, rx, group->meth));
   154 	/* C3 = py * C^3 */
   155 	MP_CHECKOK(group->meth->field_mul(py, C3, C3, group->meth));
   157 	/* ry = D * (px * C^2 - rx) - py * C^3 */
   158 	MP_CHECKOK(group->meth->field_sub(C, rx, ry, group->meth));
   159 	MP_CHECKOK(group->meth->field_mul(D, ry, ry, group->meth));
   160 	MP_CHECKOK(group->meth->field_sub(ry, C3, ry, group->meth));
   162 	/* raz4 = a * rz^4 */
   163 	MP_CHECKOK(group->meth->field_sqr(rz, raz4, group->meth));
   164 	MP_CHECKOK(group->meth->field_sqr(raz4, raz4, group->meth));
   165 	MP_CHECKOK(group->meth->
   166 			   field_mul(raz4, &group->curvea, raz4, group->meth));
   167 CLEANUP:
   168 	return res;
   169 }
   171 /* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic
   172  * curve points P and R can be identical. Uses mixed Modified-Jacobian
   173  * co-ordinates for doubling and Chudnovsky Jacobian coordinates for
   174  * additions. Assumes input is already field-encoded using field_enc, and
   175  * returns output that is still field-encoded. Uses 5-bit window NAF
   176  * method (algorithm 11) for scalar-point multiplication from Brown,
   177  * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic 
   178  * Curves Over Prime Fields. */
   179 mp_err
   180 ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py,
   181 					  mp_int *rx, mp_int *ry, const ECGroup *group)
   182 {
   183 	mp_err res = MP_OKAY;
   184 	mp_int precomp[16][2], rz, tpx, tpy;
   185 	mp_int raz4;
   186 	mp_int scratch[MAX_SCRATCH];
   187 	signed char *naf = NULL;
   188 	int i, orderBitSize;
   190 	MP_DIGITS(&rz) = 0;
   191 	MP_DIGITS(&raz4) = 0;
   192 	MP_DIGITS(&tpx) = 0;
   193 	MP_DIGITS(&tpy) = 0;
   194 	for (i = 0; i < 16; i++) {
   195 		MP_DIGITS(&precomp[i][0]) = 0;
   196 		MP_DIGITS(&precomp[i][1]) = 0;
   197 	}
   198 	for (i = 0; i < MAX_SCRATCH; i++) {
   199 		MP_DIGITS(&scratch[i]) = 0;
   200 	}
   202 	ARGCHK(group != NULL, MP_BADARG);
   203 	ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG);
   205 	/* initialize precomputation table */
   206 	MP_CHECKOK(mp_init(&tpx));
   207 	MP_CHECKOK(mp_init(&tpy));;
   208 	MP_CHECKOK(mp_init(&rz));
   209 	MP_CHECKOK(mp_init(&raz4));
   211 	for (i = 0; i < 16; i++) {
   212 		MP_CHECKOK(mp_init(&precomp[i][0]));
   213 		MP_CHECKOK(mp_init(&precomp[i][1]));
   214 	}
   215 	for (i = 0; i < MAX_SCRATCH; i++) {
   216 		MP_CHECKOK(mp_init(&scratch[i]));
   217 	}
   219 	/* Set out[8] = P */
   220 	MP_CHECKOK(mp_copy(px, &precomp[8][0]));
   221 	MP_CHECKOK(mp_copy(py, &precomp[8][1]));
   223 	/* Set (tpx, tpy) = 2P */
   224 	MP_CHECKOK(group->
   225 			   point_dbl(&precomp[8][0], &precomp[8][1], &tpx, &tpy,
   226 						 group));
   228 	/* Set 3P, 5P, ..., 15P */
   229 	for (i = 8; i < 15; i++) {
   230 		MP_CHECKOK(group->
   231 				   point_add(&precomp[i][0], &precomp[i][1], &tpx, &tpy,
   232 							 &precomp[i + 1][0], &precomp[i + 1][1],
   233 							 group));
   234 	}
   236 	/* Set -15P, -13P, ..., -P */
   237 	for (i = 0; i < 8; i++) {
   238 		MP_CHECKOK(mp_copy(&precomp[15 - i][0], &precomp[i][0]));
   239 		MP_CHECKOK(group->meth->
   240 				   field_neg(&precomp[15 - i][1], &precomp[i][1],
   241 							 group->meth));
   242 	}
   244 	/* R = inf */
   245 	MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));
   247 	orderBitSize = mpl_significant_bits(&group->order);
   249 	/* Allocate memory for NAF */
   250 	naf = (signed char *) malloc(sizeof(signed char) * (orderBitSize + 1));
   251 	if (naf == NULL) {
   252 		res = MP_MEM;
   253 		goto CLEANUP;
   254 	}
   256 	/* Compute 5NAF */
   257 	ec_compute_wNAF(naf, orderBitSize, n, 5);
   259 	/* wNAF method */
   260 	for (i = orderBitSize; i >= 0; i--) {
   261 		/* R = 2R */
   262 		ec_GFp_pt_dbl_jm(rx, ry, &rz, &raz4, rx, ry, &rz, 
   263 					     &raz4, scratch, group);
   264 		if (naf[i] != 0) {
   265 			ec_GFp_pt_add_jm_aff(rx, ry, &rz, &raz4,
   266 								 &precomp[(naf[i] + 15) / 2][0],
   267 								 &precomp[(naf[i] + 15) / 2][1], rx, ry,
   268 								 &rz, &raz4, scratch, group);
   269 		}
   270 	}
   272 	/* convert result S to affine coordinates */
   273 	MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));
   275   CLEANUP:
   276 	for (i = 0; i < MAX_SCRATCH; i++) {
   277 		mp_clear(&scratch[i]);
   278 	}
   279 	for (i = 0; i < 16; i++) {
   280 		mp_clear(&precomp[i][0]);
   281 		mp_clear(&precomp[i][1]);
   282 	}
   283 	mp_clear(&tpx);
   284 	mp_clear(&tpy);
   285 	mp_clear(&rz);
   286 	mp_clear(&raz4);
   287 	free(naf);
   288 	return res;
   289 }

mercurial