1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/security/sandbox/win/src/sidestep/mini_disassembler.h Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,156 @@ 1.4 +// Copyright (c) 2012 The Chromium Authors. All rights reserved. 1.5 +// Use of this source code is governed by a BSD-style license that can be 1.6 +// found in the LICENSE file. 1.7 + 1.8 +// Definition of MiniDisassembler. 1.9 + 1.10 +#ifndef SANDBOX_SRC_SIDESTEP_MINI_DISASSEMBLER_H__ 1.11 +#define SANDBOX_SRC_SIDESTEP_MINI_DISASSEMBLER_H__ 1.12 + 1.13 +#include "sandbox/win/src/sidestep/mini_disassembler_types.h" 1.14 + 1.15 +namespace sidestep { 1.16 + 1.17 +// This small disassembler is very limited 1.18 +// in its functionality, and in fact does only the bare minimum required by the 1.19 +// preamble patching utility. It may be useful for other purposes, however. 1.20 +// 1.21 +// The limitations include at least the following: 1.22 +// -# No support for coprocessor opcodes, MMX, etc. 1.23 +// -# No machine-readable identification of opcodes or decoding of 1.24 +// assembly parameters. The name of the opcode (as a string) is given, 1.25 +// however, to aid debugging. 1.26 +// 1.27 +// You may ask what this little disassembler actually does, then? The answer is 1.28 +// that it does the following, which is exactly what the patching utility needs: 1.29 +// -# Indicates if opcode is a jump (any kind) or a return (any kind) 1.30 +// because this is important for the patching utility to determine if 1.31 +// a function is too short or there are jumps too early in it for it 1.32 +// to be preamble patched. 1.33 +// -# The opcode length is always calculated, so that the patching utility 1.34 +// can figure out where the next instruction starts, and whether it 1.35 +// already has enough instructions to replace with the absolute jump 1.36 +// to the patching code. 1.37 +// 1.38 +// The usage is quite simple; just create a MiniDisassembler and use its 1.39 +// Disassemble() method. 1.40 +// 1.41 +// If you would like to extend this disassembler, please refer to the 1.42 +// IA-32 Intel Architecture Software Developer's Manual Volume 2: 1.43 +// Instruction Set Reference for information about operand decoding 1.44 +// etc. 1.45 +class MiniDisassembler { 1.46 + public: 1.47 + 1.48 + // Creates a new instance and sets defaults. 1.49 + // 1.50 + // operand_default_32_bits: If true, the default operand size is 1.51 + // set to 32 bits, which is the default under Win32. Otherwise it is 16 bits. 1.52 + // address_default_32_bits: If true, the default address size is 1.53 + // set to 32 bits, which is the default under Win32. Otherwise it is 16 bits. 1.54 + MiniDisassembler(bool operand_default_32_bits, 1.55 + bool address_default_32_bits); 1.56 + 1.57 + // Equivalent to MiniDisassembler(true, true); 1.58 + MiniDisassembler(); 1.59 + 1.60 + // Attempts to disassemble a single instruction starting from the 1.61 + // address in memory it is pointed to. 1.62 + // 1.63 + // start: Address where disassembly should start. 1.64 + // instruction_bytes: Variable that will be incremented by 1.65 + // the length in bytes of the instruction. 1.66 + // Returns enItJump, enItReturn or enItGeneric on success. enItUnknown 1.67 + // if unable to disassemble, enItUnused if this seems to be an unused 1.68 + // opcode. In the last two (error) cases, cbInstruction will be set 1.69 + // to 0xffffffff. 1.70 + // 1.71 + // Postcondition: This instance of the disassembler is ready to be used again, 1.72 + // with unchanged defaults from creation time. 1.73 + InstructionType Disassemble(unsigned char* start, 1.74 + unsigned int* instruction_bytes); 1.75 + 1.76 + private: 1.77 + 1.78 + // Makes the disassembler ready for reuse. 1.79 + void Initialize(); 1.80 + 1.81 + // Sets the flags for address and operand sizes. 1.82 + // Returns Number of prefix bytes. 1.83 + InstructionType ProcessPrefixes(unsigned char* start, unsigned int* size); 1.84 + 1.85 + // Sets the flag for whether we have ModR/M, and increments 1.86 + // operand_bytes_ if any are specifies by the opcode directly. 1.87 + // Returns Number of opcode bytes. 1.88 + InstructionType ProcessOpcode(unsigned char* start, 1.89 + unsigned int table, 1.90 + unsigned int* size); 1.91 + 1.92 + // Checks the type of the supplied operand. Increments 1.93 + // operand_bytes_ if it directly indicates an immediate etc. 1.94 + // operand. Asserts have_modrm_ if the operand specifies 1.95 + // a ModR/M byte. 1.96 + bool ProcessOperand(int flag_operand); 1.97 + 1.98 + // Increments operand_bytes_ by size specified by ModR/M and 1.99 + // by SIB if present. 1.100 + // Returns 0 in case of error, 1 if there is just a ModR/M byte, 1.101 + // 2 if there is a ModR/M byte and a SIB byte. 1.102 + bool ProcessModrm(unsigned char* start, unsigned int* size); 1.103 + 1.104 + // Processes the SIB byte that it is pointed to. 1.105 + // start: Pointer to the SIB byte. 1.106 + // mod: The mod field from the ModR/M byte. 1.107 + // Returns 1 to indicate success (indicates 1 SIB byte) 1.108 + bool ProcessSib(unsigned char* start, unsigned char mod, unsigned int* size); 1.109 + 1.110 + // The instruction type we have decoded from the opcode. 1.111 + InstructionType instruction_type_; 1.112 + 1.113 + // Counts the number of bytes that is occupied by operands in 1.114 + // the current instruction (note: we don't care about how large 1.115 + // operands stored in registers etc. are). 1.116 + unsigned int operand_bytes_; 1.117 + 1.118 + // True iff there is a ModR/M byte in this instruction. 1.119 + bool have_modrm_; 1.120 + 1.121 + // True iff we need to decode the ModR/M byte (sometimes it just 1.122 + // points to a register, we can tell by the addressing mode). 1.123 + bool should_decode_modrm_; 1.124 + 1.125 + // Current operand size is 32 bits if true, 16 bits if false. 1.126 + bool operand_is_32_bits_; 1.127 + 1.128 + // Default operand size is 32 bits if true, 16 bits if false. 1.129 + bool operand_default_is_32_bits_; 1.130 + 1.131 + // Current address size is 32 bits if true, 16 bits if false. 1.132 + bool address_is_32_bits_; 1.133 + 1.134 + // Default address size is 32 bits if true, 16 bits if false. 1.135 + bool address_default_is_32_bits_; 1.136 + 1.137 + // Huge big opcode table based on the IA-32 manual, defined 1.138 + // in Ia32OpcodeMap.cpp 1.139 + static const OpcodeTable s_ia32_opcode_map_[]; 1.140 + 1.141 + // Somewhat smaller table to help with decoding ModR/M bytes 1.142 + // when 16-bit addressing mode is being used. Defined in 1.143 + // Ia32ModrmMap.cpp 1.144 + static const ModrmEntry s_ia16_modrm_map_[]; 1.145 + 1.146 + // Somewhat smaller table to help with decoding ModR/M bytes 1.147 + // when 32-bit addressing mode is being used. Defined in 1.148 + // Ia32ModrmMap.cpp 1.149 + static const ModrmEntry s_ia32_modrm_map_[]; 1.150 + 1.151 + // Indicators of whether we got certain prefixes that certain 1.152 + // silly Intel instructions depend on in nonstandard ways for 1.153 + // their behaviors. 1.154 + bool got_f2_prefix_, got_f3_prefix_, got_66_prefix_; 1.155 +}; 1.156 + 1.157 +}; // namespace sidestep 1.158 + 1.159 +#endif // SANDBOX_SRC_SIDESTEP_MINI_DISASSEMBLER_H__