security/sandbox/win/src/sidestep/mini_disassembler.h

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
     2 // Use of this source code is governed by a BSD-style license that can be
     3 // found in the LICENSE file.
     5 // Definition of MiniDisassembler.
     7 #ifndef SANDBOX_SRC_SIDESTEP_MINI_DISASSEMBLER_H__
     8 #define SANDBOX_SRC_SIDESTEP_MINI_DISASSEMBLER_H__
    10 #include "sandbox/win/src/sidestep/mini_disassembler_types.h"
    12 namespace sidestep {
    14 // This small disassembler is very limited
    15 // in its functionality, and in fact does only the bare minimum required by the
    16 // preamble patching utility.  It may be useful for other purposes, however.
    17 //
    18 // The limitations include at least the following:
    19 //  -# No support for coprocessor opcodes, MMX, etc.
    20 //  -# No machine-readable identification of opcodes or decoding of
    21 //     assembly parameters. The name of the opcode (as a string) is given,
    22 //     however, to aid debugging.
    23 //
    24 // You may ask what this little disassembler actually does, then?  The answer is
    25 // that it does the following, which is exactly what the patching utility needs:
    26 //  -# Indicates if opcode is a jump (any kind) or a return (any kind)
    27 //     because this is important for the patching utility to determine if
    28 //     a function is too short or there are jumps too early in it for it
    29 //     to be preamble patched.
    30 //  -# The opcode length is always calculated, so that the patching utility
    31 //     can figure out where the next instruction starts, and whether it
    32 //     already has enough instructions to replace with the absolute jump
    33 //     to the patching code.
    34 //
    35 // The usage is quite simple; just create a MiniDisassembler and use its
    36 // Disassemble() method.
    37 //
    38 // If you would like to extend this disassembler, please refer to the
    39 // IA-32 Intel Architecture Software Developer's Manual Volume 2:
    40 // Instruction Set Reference for information about operand decoding
    41 // etc.
    42 class MiniDisassembler {
    43  public:
    45   // Creates a new instance and sets defaults.
    46   //
    47   // operand_default_32_bits: If true, the default operand size is
    48   // set to 32 bits, which is the default under Win32. Otherwise it is 16 bits.
    49   // address_default_32_bits: If true, the default address size is
    50   // set to 32 bits, which is the default under Win32. Otherwise it is 16 bits.
    51   MiniDisassembler(bool operand_default_32_bits,
    52                    bool address_default_32_bits);
    54   // Equivalent to MiniDisassembler(true, true);
    55   MiniDisassembler();
    57   // Attempts to disassemble a single instruction starting from the
    58   // address in memory it is pointed to.
    59   //
    60   // start: Address where disassembly should start.
    61   // instruction_bytes: Variable that will be incremented by
    62   // the length in bytes of the instruction.
    63   // Returns enItJump, enItReturn or enItGeneric on success.  enItUnknown
    64   // if unable to disassemble, enItUnused if this seems to be an unused
    65   // opcode. In the last two (error) cases, cbInstruction will be set
    66   // to 0xffffffff.
    67   //
    68   // Postcondition: This instance of the disassembler is ready to be used again,
    69   // with unchanged defaults from creation time.
    70   InstructionType Disassemble(unsigned char* start,
    71                               unsigned int* instruction_bytes);
    73  private:
    75   // Makes the disassembler ready for reuse.
    76   void Initialize();
    78   // Sets the flags for address and operand sizes.
    79   // Returns Number of prefix bytes.
    80   InstructionType ProcessPrefixes(unsigned char* start, unsigned int* size);
    82   // Sets the flag for whether we have ModR/M, and increments
    83   // operand_bytes_ if any are specifies by the opcode directly.
    84   // Returns Number of opcode bytes.
    85   InstructionType ProcessOpcode(unsigned char* start,
    86                                 unsigned int table,
    87                                 unsigned int* size);
    89   // Checks the type of the supplied operand.  Increments
    90   // operand_bytes_ if it directly indicates an immediate etc.
    91   // operand.  Asserts have_modrm_ if the operand specifies
    92   // a ModR/M byte.
    93   bool ProcessOperand(int flag_operand);
    95   // Increments operand_bytes_ by size specified by ModR/M and
    96   // by SIB if present.
    97   // Returns 0 in case of error, 1 if there is just a ModR/M byte,
    98   // 2 if there is a ModR/M byte and a SIB byte.
    99   bool ProcessModrm(unsigned char* start, unsigned int* size);
   101   // Processes the SIB byte that it is pointed to.
   102   // start: Pointer to the SIB byte.
   103   // mod: The mod field from the ModR/M byte.
   104   // Returns 1 to indicate success (indicates 1 SIB byte)
   105   bool ProcessSib(unsigned char* start, unsigned char mod, unsigned int* size);
   107   // The instruction type we have decoded from the opcode.
   108   InstructionType instruction_type_;
   110   // Counts the number of bytes that is occupied by operands in
   111   // the current instruction (note: we don't care about how large
   112   // operands stored in registers etc. are).
   113   unsigned int operand_bytes_;
   115   // True iff there is a ModR/M byte in this instruction.
   116   bool have_modrm_;
   118   // True iff we need to decode the ModR/M byte (sometimes it just
   119   // points to a register, we can tell by the addressing mode).
   120   bool should_decode_modrm_;
   122   // Current operand size is 32 bits if true, 16 bits if false.
   123   bool operand_is_32_bits_;
   125   // Default operand size is 32 bits if true, 16 bits if false.
   126   bool operand_default_is_32_bits_;
   128   // Current address size is 32 bits if true, 16 bits if false.
   129   bool address_is_32_bits_;
   131   // Default address size is 32 bits if true, 16 bits if false.
   132   bool address_default_is_32_bits_;
   134   // Huge big opcode table based on the IA-32 manual, defined
   135   // in Ia32OpcodeMap.cpp
   136   static const OpcodeTable s_ia32_opcode_map_[];
   138   // Somewhat smaller table to help with decoding ModR/M bytes
   139   // when 16-bit addressing mode is being used.  Defined in
   140   // Ia32ModrmMap.cpp
   141   static const ModrmEntry s_ia16_modrm_map_[];
   143   // Somewhat smaller table to help with decoding ModR/M bytes
   144   // when 32-bit addressing mode is being used.  Defined in
   145   // Ia32ModrmMap.cpp
   146   static const ModrmEntry s_ia32_modrm_map_[];
   148   // Indicators of whether we got certain prefixes that certain
   149   // silly Intel instructions depend on in nonstandard ways for
   150   // their behaviors.
   151   bool got_f2_prefix_, got_f3_prefix_, got_66_prefix_;
   152 };
   154 };  // namespace sidestep
   156 #endif  // SANDBOX_SRC_SIDESTEP_MINI_DISASSEMBLER_H__

mercurial