gfx/skia/trunk/src/pathops/SkDQuadImplicit.cpp

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 /*
     2  * Copyright 2012 Google Inc.
     3  *
     4  * Use of this source code is governed by a BSD-style license that can be
     5  * found in the LICENSE file.
     6  */
     7 #include "SkDQuadImplicit.h"
     9 /* from http://tom.cs.byu.edu/~tom/papers/cvgip84.pdf 4.1
    10  *
    11  * This paper proves that Syvester's method can compute the implicit form of
    12  * the quadratic from the parameterized form.
    13  *
    14  * Given x = a*t*t + b*t + c  (the parameterized form)
    15  *       y = d*t*t + e*t + f
    16  *
    17  * we want to find an equation of the implicit form:
    18  *
    19  * A*x*x + B*x*y + C*y*y + D*x + E*y + F = 0
    20  *
    21  * The implicit form can be expressed as a 4x4 determinant, as shown.
    22  *
    23  * The resultant obtained by Syvester's method is
    24  *
    25  * |   a   b   (c - x)     0     |
    26  * |   0   a      b     (c - x)  |
    27  * |   d   e   (f - y)     0     |
    28  * |   0   d      e     (f - y)  |
    29  *
    30  * which expands to
    31  *
    32  * d*d*x*x + -2*a*d*x*y + a*a*y*y
    33  *         + (-2*c*d*d + b*e*d - a*e*e + 2*a*f*d)*x
    34  *         + (-2*f*a*a + e*b*a - d*b*b + 2*d*c*a)*y
    35  *         +
    36  * |   a   b   c   0   |
    37  * |   0   a   b   c   | == 0.
    38  * |   d   e   f   0   |
    39  * |   0   d   e   f   |
    40  *
    41  * Expanding the constant determinant results in
    42  *
    43  *   | a b c |     | b c 0 |
    44  * a*| e f 0 | + d*| a b c | ==
    45  *   | d e f |     | d e f |
    46  *
    47  * a*(a*f*f + c*e*e - c*f*d - b*e*f) + d*(b*b*f + c*c*d - c*a*f - c*e*b)
    48  *
    49  */
    51 // use the tricky arithmetic path, but leave the original to compare just in case
    52 static bool straight_forward = false;
    54 SkDQuadImplicit::SkDQuadImplicit(const SkDQuad& q) {
    55     double a, b, c;
    56     SkDQuad::SetABC(&q[0].fX, &a, &b, &c);
    57     double d, e, f;
    58     SkDQuad::SetABC(&q[0].fY, &d, &e, &f);
    59     // compute the implicit coefficients
    60     if (straight_forward) {  // 42 muls, 13 adds
    61         fP[kXx_Coeff] = d * d;
    62         fP[kXy_Coeff] = -2 * a * d;
    63         fP[kYy_Coeff] = a * a;
    64         fP[kX_Coeff] = -2*c*d*d + b*e*d - a*e*e + 2*a*f*d;
    65         fP[kY_Coeff] = -2*f*a*a + e*b*a - d*b*b + 2*d*c*a;
    66         fP[kC_Coeff] = a*(a*f*f + c*e*e - c*f*d - b*e*f)
    67                    + d*(b*b*f + c*c*d - c*a*f - c*e*b);
    68     } else {  // 26 muls, 11 adds
    69         double aa = a * a;
    70         double ad = a * d;
    71         double dd = d * d;
    72         fP[kXx_Coeff] = dd;
    73         fP[kXy_Coeff] = -2 * ad;
    74         fP[kYy_Coeff] = aa;
    75         double be = b * e;
    76         double bde = be * d;
    77         double cdd = c * dd;
    78         double ee = e * e;
    79         fP[kX_Coeff] =  -2*cdd + bde - a*ee + 2*ad*f;
    80         double aaf = aa * f;
    81         double abe = a * be;
    82         double ac = a * c;
    83         double bb_2ac = b*b - 2*ac;
    84         fP[kY_Coeff] = -2*aaf + abe - d*bb_2ac;
    85         fP[kC_Coeff] = aaf*f + ac*ee + d*f*bb_2ac - abe*f + c*cdd - c*bde;
    86     }
    87 }
    89  /* Given a pair of quadratics, determine their parametric coefficients.
    90   * If the scaled coefficients are nearly equal, then the part of the quadratics
    91   * may be coincident.
    92   * OPTIMIZATION -- since comparison short-circuits on no match,
    93   * lazily compute the coefficients, comparing the easiest to compute first.
    94   * xx and yy first; then xy; and so on.
    95   */
    96 bool SkDQuadImplicit::match(const SkDQuadImplicit& p2) const {
    97     int first = 0;
    98     for (int index = 0; index <= kC_Coeff; ++index) {
    99         if (approximately_zero(fP[index]) && approximately_zero(p2.fP[index])) {
   100             first += first == index;
   101             continue;
   102         }
   103         if (first == index) {
   104             continue;
   105         }
   106         if (!AlmostDequalUlps(fP[index] * p2.fP[first], fP[first] * p2.fP[index])) {
   107             return false;
   108         }
   109     }
   110     return true;
   111 }
   113 bool SkDQuadImplicit::Match(const SkDQuad& quad1, const SkDQuad& quad2) {
   114     SkDQuadImplicit i1(quad1);  // a'xx , b'xy , c'yy , d'x , e'y , f
   115     SkDQuadImplicit i2(quad2);
   116     return i1.match(i2);
   117 }

mercurial