|
1 /* |
|
2 * Copyright 2012 Google Inc. |
|
3 * |
|
4 * Use of this source code is governed by a BSD-style license that can be |
|
5 * found in the LICENSE file. |
|
6 */ |
|
7 #include "SkDQuadImplicit.h" |
|
8 |
|
9 /* from http://tom.cs.byu.edu/~tom/papers/cvgip84.pdf 4.1 |
|
10 * |
|
11 * This paper proves that Syvester's method can compute the implicit form of |
|
12 * the quadratic from the parameterized form. |
|
13 * |
|
14 * Given x = a*t*t + b*t + c (the parameterized form) |
|
15 * y = d*t*t + e*t + f |
|
16 * |
|
17 * we want to find an equation of the implicit form: |
|
18 * |
|
19 * A*x*x + B*x*y + C*y*y + D*x + E*y + F = 0 |
|
20 * |
|
21 * The implicit form can be expressed as a 4x4 determinant, as shown. |
|
22 * |
|
23 * The resultant obtained by Syvester's method is |
|
24 * |
|
25 * | a b (c - x) 0 | |
|
26 * | 0 a b (c - x) | |
|
27 * | d e (f - y) 0 | |
|
28 * | 0 d e (f - y) | |
|
29 * |
|
30 * which expands to |
|
31 * |
|
32 * d*d*x*x + -2*a*d*x*y + a*a*y*y |
|
33 * + (-2*c*d*d + b*e*d - a*e*e + 2*a*f*d)*x |
|
34 * + (-2*f*a*a + e*b*a - d*b*b + 2*d*c*a)*y |
|
35 * + |
|
36 * | a b c 0 | |
|
37 * | 0 a b c | == 0. |
|
38 * | d e f 0 | |
|
39 * | 0 d e f | |
|
40 * |
|
41 * Expanding the constant determinant results in |
|
42 * |
|
43 * | a b c | | b c 0 | |
|
44 * a*| e f 0 | + d*| a b c | == |
|
45 * | d e f | | d e f | |
|
46 * |
|
47 * a*(a*f*f + c*e*e - c*f*d - b*e*f) + d*(b*b*f + c*c*d - c*a*f - c*e*b) |
|
48 * |
|
49 */ |
|
50 |
|
51 // use the tricky arithmetic path, but leave the original to compare just in case |
|
52 static bool straight_forward = false; |
|
53 |
|
54 SkDQuadImplicit::SkDQuadImplicit(const SkDQuad& q) { |
|
55 double a, b, c; |
|
56 SkDQuad::SetABC(&q[0].fX, &a, &b, &c); |
|
57 double d, e, f; |
|
58 SkDQuad::SetABC(&q[0].fY, &d, &e, &f); |
|
59 // compute the implicit coefficients |
|
60 if (straight_forward) { // 42 muls, 13 adds |
|
61 fP[kXx_Coeff] = d * d; |
|
62 fP[kXy_Coeff] = -2 * a * d; |
|
63 fP[kYy_Coeff] = a * a; |
|
64 fP[kX_Coeff] = -2*c*d*d + b*e*d - a*e*e + 2*a*f*d; |
|
65 fP[kY_Coeff] = -2*f*a*a + e*b*a - d*b*b + 2*d*c*a; |
|
66 fP[kC_Coeff] = a*(a*f*f + c*e*e - c*f*d - b*e*f) |
|
67 + d*(b*b*f + c*c*d - c*a*f - c*e*b); |
|
68 } else { // 26 muls, 11 adds |
|
69 double aa = a * a; |
|
70 double ad = a * d; |
|
71 double dd = d * d; |
|
72 fP[kXx_Coeff] = dd; |
|
73 fP[kXy_Coeff] = -2 * ad; |
|
74 fP[kYy_Coeff] = aa; |
|
75 double be = b * e; |
|
76 double bde = be * d; |
|
77 double cdd = c * dd; |
|
78 double ee = e * e; |
|
79 fP[kX_Coeff] = -2*cdd + bde - a*ee + 2*ad*f; |
|
80 double aaf = aa * f; |
|
81 double abe = a * be; |
|
82 double ac = a * c; |
|
83 double bb_2ac = b*b - 2*ac; |
|
84 fP[kY_Coeff] = -2*aaf + abe - d*bb_2ac; |
|
85 fP[kC_Coeff] = aaf*f + ac*ee + d*f*bb_2ac - abe*f + c*cdd - c*bde; |
|
86 } |
|
87 } |
|
88 |
|
89 /* Given a pair of quadratics, determine their parametric coefficients. |
|
90 * If the scaled coefficients are nearly equal, then the part of the quadratics |
|
91 * may be coincident. |
|
92 * OPTIMIZATION -- since comparison short-circuits on no match, |
|
93 * lazily compute the coefficients, comparing the easiest to compute first. |
|
94 * xx and yy first; then xy; and so on. |
|
95 */ |
|
96 bool SkDQuadImplicit::match(const SkDQuadImplicit& p2) const { |
|
97 int first = 0; |
|
98 for (int index = 0; index <= kC_Coeff; ++index) { |
|
99 if (approximately_zero(fP[index]) && approximately_zero(p2.fP[index])) { |
|
100 first += first == index; |
|
101 continue; |
|
102 } |
|
103 if (first == index) { |
|
104 continue; |
|
105 } |
|
106 if (!AlmostDequalUlps(fP[index] * p2.fP[first], fP[first] * p2.fP[index])) { |
|
107 return false; |
|
108 } |
|
109 } |
|
110 return true; |
|
111 } |
|
112 |
|
113 bool SkDQuadImplicit::Match(const SkDQuad& quad1, const SkDQuad& quad2) { |
|
114 SkDQuadImplicit i1(quad1); // a'xx , b'xy , c'yy , d'x , e'y , f |
|
115 SkDQuadImplicit i2(quad2); |
|
116 return i1.match(i2); |
|
117 } |