gfx/skia/trunk/src/pathops/SkDQuadImplicit.cpp

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/gfx/skia/trunk/src/pathops/SkDQuadImplicit.cpp	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,117 @@
     1.4 +/*
     1.5 + * Copyright 2012 Google Inc.
     1.6 + *
     1.7 + * Use of this source code is governed by a BSD-style license that can be
     1.8 + * found in the LICENSE file.
     1.9 + */
    1.10 +#include "SkDQuadImplicit.h"
    1.11 +
    1.12 +/* from http://tom.cs.byu.edu/~tom/papers/cvgip84.pdf 4.1
    1.13 + *
    1.14 + * This paper proves that Syvester's method can compute the implicit form of
    1.15 + * the quadratic from the parameterized form.
    1.16 + *
    1.17 + * Given x = a*t*t + b*t + c  (the parameterized form)
    1.18 + *       y = d*t*t + e*t + f
    1.19 + *
    1.20 + * we want to find an equation of the implicit form:
    1.21 + *
    1.22 + * A*x*x + B*x*y + C*y*y + D*x + E*y + F = 0
    1.23 + *
    1.24 + * The implicit form can be expressed as a 4x4 determinant, as shown.
    1.25 + *
    1.26 + * The resultant obtained by Syvester's method is
    1.27 + *
    1.28 + * |   a   b   (c - x)     0     |
    1.29 + * |   0   a      b     (c - x)  |
    1.30 + * |   d   e   (f - y)     0     |
    1.31 + * |   0   d      e     (f - y)  |
    1.32 + *
    1.33 + * which expands to
    1.34 + *
    1.35 + * d*d*x*x + -2*a*d*x*y + a*a*y*y
    1.36 + *         + (-2*c*d*d + b*e*d - a*e*e + 2*a*f*d)*x
    1.37 + *         + (-2*f*a*a + e*b*a - d*b*b + 2*d*c*a)*y
    1.38 + *         +
    1.39 + * |   a   b   c   0   |
    1.40 + * |   0   a   b   c   | == 0.
    1.41 + * |   d   e   f   0   |
    1.42 + * |   0   d   e   f   |
    1.43 + *
    1.44 + * Expanding the constant determinant results in
    1.45 + *
    1.46 + *   | a b c |     | b c 0 |
    1.47 + * a*| e f 0 | + d*| a b c | ==
    1.48 + *   | d e f |     | d e f |
    1.49 + *
    1.50 + * a*(a*f*f + c*e*e - c*f*d - b*e*f) + d*(b*b*f + c*c*d - c*a*f - c*e*b)
    1.51 + *
    1.52 + */
    1.53 +
    1.54 +// use the tricky arithmetic path, but leave the original to compare just in case
    1.55 +static bool straight_forward = false;
    1.56 +
    1.57 +SkDQuadImplicit::SkDQuadImplicit(const SkDQuad& q) {
    1.58 +    double a, b, c;
    1.59 +    SkDQuad::SetABC(&q[0].fX, &a, &b, &c);
    1.60 +    double d, e, f;
    1.61 +    SkDQuad::SetABC(&q[0].fY, &d, &e, &f);
    1.62 +    // compute the implicit coefficients
    1.63 +    if (straight_forward) {  // 42 muls, 13 adds
    1.64 +        fP[kXx_Coeff] = d * d;
    1.65 +        fP[kXy_Coeff] = -2 * a * d;
    1.66 +        fP[kYy_Coeff] = a * a;
    1.67 +        fP[kX_Coeff] = -2*c*d*d + b*e*d - a*e*e + 2*a*f*d;
    1.68 +        fP[kY_Coeff] = -2*f*a*a + e*b*a - d*b*b + 2*d*c*a;
    1.69 +        fP[kC_Coeff] = a*(a*f*f + c*e*e - c*f*d - b*e*f)
    1.70 +                   + d*(b*b*f + c*c*d - c*a*f - c*e*b);
    1.71 +    } else {  // 26 muls, 11 adds
    1.72 +        double aa = a * a;
    1.73 +        double ad = a * d;
    1.74 +        double dd = d * d;
    1.75 +        fP[kXx_Coeff] = dd;
    1.76 +        fP[kXy_Coeff] = -2 * ad;
    1.77 +        fP[kYy_Coeff] = aa;
    1.78 +        double be = b * e;
    1.79 +        double bde = be * d;
    1.80 +        double cdd = c * dd;
    1.81 +        double ee = e * e;
    1.82 +        fP[kX_Coeff] =  -2*cdd + bde - a*ee + 2*ad*f;
    1.83 +        double aaf = aa * f;
    1.84 +        double abe = a * be;
    1.85 +        double ac = a * c;
    1.86 +        double bb_2ac = b*b - 2*ac;
    1.87 +        fP[kY_Coeff] = -2*aaf + abe - d*bb_2ac;
    1.88 +        fP[kC_Coeff] = aaf*f + ac*ee + d*f*bb_2ac - abe*f + c*cdd - c*bde;
    1.89 +    }
    1.90 +}
    1.91 +
    1.92 + /* Given a pair of quadratics, determine their parametric coefficients.
    1.93 +  * If the scaled coefficients are nearly equal, then the part of the quadratics
    1.94 +  * may be coincident.
    1.95 +  * OPTIMIZATION -- since comparison short-circuits on no match,
    1.96 +  * lazily compute the coefficients, comparing the easiest to compute first.
    1.97 +  * xx and yy first; then xy; and so on.
    1.98 +  */
    1.99 +bool SkDQuadImplicit::match(const SkDQuadImplicit& p2) const {
   1.100 +    int first = 0;
   1.101 +    for (int index = 0; index <= kC_Coeff; ++index) {
   1.102 +        if (approximately_zero(fP[index]) && approximately_zero(p2.fP[index])) {
   1.103 +            first += first == index;
   1.104 +            continue;
   1.105 +        }
   1.106 +        if (first == index) {
   1.107 +            continue;
   1.108 +        }
   1.109 +        if (!AlmostDequalUlps(fP[index] * p2.fP[first], fP[first] * p2.fP[index])) {
   1.110 +            return false;
   1.111 +        }
   1.112 +    }
   1.113 +    return true;
   1.114 +}
   1.115 +
   1.116 +bool SkDQuadImplicit::Match(const SkDQuad& quad1, const SkDQuad& quad2) {
   1.117 +    SkDQuadImplicit i1(quad1);  // a'xx , b'xy , c'yy , d'x , e'y , f
   1.118 +    SkDQuadImplicit i2(quad2);
   1.119 +    return i1.match(i2);
   1.120 +}

mercurial