|
1 // Copyright 2010 the V8 project authors. All rights reserved. |
|
2 // Redistribution and use in source and binary forms, with or without |
|
3 // modification, are permitted provided that the following conditions are |
|
4 // met: |
|
5 // |
|
6 // * Redistributions of source code must retain the above copyright |
|
7 // notice, this list of conditions and the following disclaimer. |
|
8 // * Redistributions in binary form must reproduce the above |
|
9 // copyright notice, this list of conditions and the following |
|
10 // disclaimer in the documentation and/or other materials provided |
|
11 // with the distribution. |
|
12 // * Neither the name of Google Inc. nor the names of its |
|
13 // contributors may be used to endorse or promote products derived |
|
14 // from this software without specific prior written permission. |
|
15 // |
|
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
27 |
|
28 #include <stdarg.h> |
|
29 #include <limits.h> |
|
30 |
|
31 #include "strtod.h" |
|
32 #include "bignum.h" |
|
33 #include "cached-powers.h" |
|
34 #include "ieee.h" |
|
35 |
|
36 namespace double_conversion { |
|
37 |
|
38 // 2^53 = 9007199254740992. |
|
39 // Any integer with at most 15 decimal digits will hence fit into a double |
|
40 // (which has a 53bit significand) without loss of precision. |
|
41 static const int kMaxExactDoubleIntegerDecimalDigits = 15; |
|
42 // 2^64 = 18446744073709551616 > 10^19 |
|
43 static const int kMaxUint64DecimalDigits = 19; |
|
44 |
|
45 // Max double: 1.7976931348623157 x 10^308 |
|
46 // Min non-zero double: 4.9406564584124654 x 10^-324 |
|
47 // Any x >= 10^309 is interpreted as +infinity. |
|
48 // Any x <= 10^-324 is interpreted as 0. |
|
49 // Note that 2.5e-324 (despite being smaller than the min double) will be read |
|
50 // as non-zero (equal to the min non-zero double). |
|
51 static const int kMaxDecimalPower = 309; |
|
52 static const int kMinDecimalPower = -324; |
|
53 |
|
54 // 2^64 = 18446744073709551616 |
|
55 static const uint64_t kMaxUint64 = UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF); |
|
56 |
|
57 |
|
58 static const double exact_powers_of_ten[] = { |
|
59 1.0, // 10^0 |
|
60 10.0, |
|
61 100.0, |
|
62 1000.0, |
|
63 10000.0, |
|
64 100000.0, |
|
65 1000000.0, |
|
66 10000000.0, |
|
67 100000000.0, |
|
68 1000000000.0, |
|
69 10000000000.0, // 10^10 |
|
70 100000000000.0, |
|
71 1000000000000.0, |
|
72 10000000000000.0, |
|
73 100000000000000.0, |
|
74 1000000000000000.0, |
|
75 10000000000000000.0, |
|
76 100000000000000000.0, |
|
77 1000000000000000000.0, |
|
78 10000000000000000000.0, |
|
79 100000000000000000000.0, // 10^20 |
|
80 1000000000000000000000.0, |
|
81 // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22 |
|
82 10000000000000000000000.0 |
|
83 }; |
|
84 static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten); |
|
85 |
|
86 // Maximum number of significant digits in the decimal representation. |
|
87 // In fact the value is 772 (see conversions.cc), but to give us some margin |
|
88 // we round up to 780. |
|
89 static const int kMaxSignificantDecimalDigits = 780; |
|
90 |
|
91 static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) { |
|
92 for (int i = 0; i < buffer.length(); i++) { |
|
93 if (buffer[i] != '0') { |
|
94 return buffer.SubVector(i, buffer.length()); |
|
95 } |
|
96 } |
|
97 return Vector<const char>(buffer.start(), 0); |
|
98 } |
|
99 |
|
100 |
|
101 static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) { |
|
102 for (int i = buffer.length() - 1; i >= 0; --i) { |
|
103 if (buffer[i] != '0') { |
|
104 return buffer.SubVector(0, i + 1); |
|
105 } |
|
106 } |
|
107 return Vector<const char>(buffer.start(), 0); |
|
108 } |
|
109 |
|
110 |
|
111 static void CutToMaxSignificantDigits(Vector<const char> buffer, |
|
112 int exponent, |
|
113 char* significant_buffer, |
|
114 int* significant_exponent) { |
|
115 for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) { |
|
116 significant_buffer[i] = buffer[i]; |
|
117 } |
|
118 // The input buffer has been trimmed. Therefore the last digit must be |
|
119 // different from '0'. |
|
120 ASSERT(buffer[buffer.length() - 1] != '0'); |
|
121 // Set the last digit to be non-zero. This is sufficient to guarantee |
|
122 // correct rounding. |
|
123 significant_buffer[kMaxSignificantDecimalDigits - 1] = '1'; |
|
124 *significant_exponent = |
|
125 exponent + (buffer.length() - kMaxSignificantDecimalDigits); |
|
126 } |
|
127 |
|
128 |
|
129 // Trims the buffer and cuts it to at most kMaxSignificantDecimalDigits. |
|
130 // If possible the input-buffer is reused, but if the buffer needs to be |
|
131 // modified (due to cutting), then the input needs to be copied into the |
|
132 // buffer_copy_space. |
|
133 static void TrimAndCut(Vector<const char> buffer, int exponent, |
|
134 char* buffer_copy_space, int space_size, |
|
135 Vector<const char>* trimmed, int* updated_exponent) { |
|
136 Vector<const char> left_trimmed = TrimLeadingZeros(buffer); |
|
137 Vector<const char> right_trimmed = TrimTrailingZeros(left_trimmed); |
|
138 exponent += left_trimmed.length() - right_trimmed.length(); |
|
139 if (right_trimmed.length() > kMaxSignificantDecimalDigits) { |
|
140 ASSERT(space_size >= kMaxSignificantDecimalDigits); |
|
141 CutToMaxSignificantDigits(right_trimmed, exponent, |
|
142 buffer_copy_space, updated_exponent); |
|
143 *trimmed = Vector<const char>(buffer_copy_space, |
|
144 kMaxSignificantDecimalDigits); |
|
145 } else { |
|
146 *trimmed = right_trimmed; |
|
147 *updated_exponent = exponent; |
|
148 } |
|
149 } |
|
150 |
|
151 |
|
152 // Reads digits from the buffer and converts them to a uint64. |
|
153 // Reads in as many digits as fit into a uint64. |
|
154 // When the string starts with "1844674407370955161" no further digit is read. |
|
155 // Since 2^64 = 18446744073709551616 it would still be possible read another |
|
156 // digit if it was less or equal than 6, but this would complicate the code. |
|
157 static uint64_t ReadUint64(Vector<const char> buffer, |
|
158 int* number_of_read_digits) { |
|
159 uint64_t result = 0; |
|
160 int i = 0; |
|
161 while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) { |
|
162 int digit = buffer[i++] - '0'; |
|
163 ASSERT(0 <= digit && digit <= 9); |
|
164 result = 10 * result + digit; |
|
165 } |
|
166 *number_of_read_digits = i; |
|
167 return result; |
|
168 } |
|
169 |
|
170 |
|
171 // Reads a DiyFp from the buffer. |
|
172 // The returned DiyFp is not necessarily normalized. |
|
173 // If remaining_decimals is zero then the returned DiyFp is accurate. |
|
174 // Otherwise it has been rounded and has error of at most 1/2 ulp. |
|
175 static void ReadDiyFp(Vector<const char> buffer, |
|
176 DiyFp* result, |
|
177 int* remaining_decimals) { |
|
178 int read_digits; |
|
179 uint64_t significand = ReadUint64(buffer, &read_digits); |
|
180 if (buffer.length() == read_digits) { |
|
181 *result = DiyFp(significand, 0); |
|
182 *remaining_decimals = 0; |
|
183 } else { |
|
184 // Round the significand. |
|
185 if (buffer[read_digits] >= '5') { |
|
186 significand++; |
|
187 } |
|
188 // Compute the binary exponent. |
|
189 int exponent = 0; |
|
190 *result = DiyFp(significand, exponent); |
|
191 *remaining_decimals = buffer.length() - read_digits; |
|
192 } |
|
193 } |
|
194 |
|
195 |
|
196 static bool DoubleStrtod(Vector<const char> trimmed, |
|
197 int exponent, |
|
198 double* result) { |
|
199 #if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS) |
|
200 // On x86 the floating-point stack can be 64 or 80 bits wide. If it is |
|
201 // 80 bits wide (as is the case on Linux) then double-rounding occurs and the |
|
202 // result is not accurate. |
|
203 // We know that Windows32 uses 64 bits and is therefore accurate. |
|
204 // Note that the ARM simulator is compiled for 32bits. It therefore exhibits |
|
205 // the same problem. |
|
206 return false; |
|
207 #endif |
|
208 if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) { |
|
209 int read_digits; |
|
210 // The trimmed input fits into a double. |
|
211 // If the 10^exponent (resp. 10^-exponent) fits into a double too then we |
|
212 // can compute the result-double simply by multiplying (resp. dividing) the |
|
213 // two numbers. |
|
214 // This is possible because IEEE guarantees that floating-point operations |
|
215 // return the best possible approximation. |
|
216 if (exponent < 0 && -exponent < kExactPowersOfTenSize) { |
|
217 // 10^-exponent fits into a double. |
|
218 *result = static_cast<double>(ReadUint64(trimmed, &read_digits)); |
|
219 ASSERT(read_digits == trimmed.length()); |
|
220 *result /= exact_powers_of_ten[-exponent]; |
|
221 return true; |
|
222 } |
|
223 if (0 <= exponent && exponent < kExactPowersOfTenSize) { |
|
224 // 10^exponent fits into a double. |
|
225 *result = static_cast<double>(ReadUint64(trimmed, &read_digits)); |
|
226 ASSERT(read_digits == trimmed.length()); |
|
227 *result *= exact_powers_of_ten[exponent]; |
|
228 return true; |
|
229 } |
|
230 int remaining_digits = |
|
231 kMaxExactDoubleIntegerDecimalDigits - trimmed.length(); |
|
232 if ((0 <= exponent) && |
|
233 (exponent - remaining_digits < kExactPowersOfTenSize)) { |
|
234 // The trimmed string was short and we can multiply it with |
|
235 // 10^remaining_digits. As a result the remaining exponent now fits |
|
236 // into a double too. |
|
237 *result = static_cast<double>(ReadUint64(trimmed, &read_digits)); |
|
238 ASSERT(read_digits == trimmed.length()); |
|
239 *result *= exact_powers_of_ten[remaining_digits]; |
|
240 *result *= exact_powers_of_ten[exponent - remaining_digits]; |
|
241 return true; |
|
242 } |
|
243 } |
|
244 return false; |
|
245 } |
|
246 |
|
247 |
|
248 // Returns 10^exponent as an exact DiyFp. |
|
249 // The given exponent must be in the range [1; kDecimalExponentDistance[. |
|
250 static DiyFp AdjustmentPowerOfTen(int exponent) { |
|
251 ASSERT(0 < exponent); |
|
252 ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance); |
|
253 // Simply hardcode the remaining powers for the given decimal exponent |
|
254 // distance. |
|
255 ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8); |
|
256 switch (exponent) { |
|
257 case 1: return DiyFp(UINT64_2PART_C(0xa0000000, 00000000), -60); |
|
258 case 2: return DiyFp(UINT64_2PART_C(0xc8000000, 00000000), -57); |
|
259 case 3: return DiyFp(UINT64_2PART_C(0xfa000000, 00000000), -54); |
|
260 case 4: return DiyFp(UINT64_2PART_C(0x9c400000, 00000000), -50); |
|
261 case 5: return DiyFp(UINT64_2PART_C(0xc3500000, 00000000), -47); |
|
262 case 6: return DiyFp(UINT64_2PART_C(0xf4240000, 00000000), -44); |
|
263 case 7: return DiyFp(UINT64_2PART_C(0x98968000, 00000000), -40); |
|
264 default: |
|
265 UNREACHABLE(); |
|
266 return DiyFp(0, 0); |
|
267 } |
|
268 } |
|
269 |
|
270 |
|
271 // If the function returns true then the result is the correct double. |
|
272 // Otherwise it is either the correct double or the double that is just below |
|
273 // the correct double. |
|
274 static bool DiyFpStrtod(Vector<const char> buffer, |
|
275 int exponent, |
|
276 double* result) { |
|
277 DiyFp input; |
|
278 int remaining_decimals; |
|
279 ReadDiyFp(buffer, &input, &remaining_decimals); |
|
280 // Since we may have dropped some digits the input is not accurate. |
|
281 // If remaining_decimals is different than 0 than the error is at most |
|
282 // .5 ulp (unit in the last place). |
|
283 // We don't want to deal with fractions and therefore keep a common |
|
284 // denominator. |
|
285 const int kDenominatorLog = 3; |
|
286 const int kDenominator = 1 << kDenominatorLog; |
|
287 // Move the remaining decimals into the exponent. |
|
288 exponent += remaining_decimals; |
|
289 int error = (remaining_decimals == 0 ? 0 : kDenominator / 2); |
|
290 |
|
291 int old_e = input.e(); |
|
292 input.Normalize(); |
|
293 error <<= old_e - input.e(); |
|
294 |
|
295 ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent); |
|
296 if (exponent < PowersOfTenCache::kMinDecimalExponent) { |
|
297 *result = 0.0; |
|
298 return true; |
|
299 } |
|
300 DiyFp cached_power; |
|
301 int cached_decimal_exponent; |
|
302 PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent, |
|
303 &cached_power, |
|
304 &cached_decimal_exponent); |
|
305 |
|
306 if (cached_decimal_exponent != exponent) { |
|
307 int adjustment_exponent = exponent - cached_decimal_exponent; |
|
308 DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent); |
|
309 input.Multiply(adjustment_power); |
|
310 if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) { |
|
311 // The product of input with the adjustment power fits into a 64 bit |
|
312 // integer. |
|
313 ASSERT(DiyFp::kSignificandSize == 64); |
|
314 } else { |
|
315 // The adjustment power is exact. There is hence only an error of 0.5. |
|
316 error += kDenominator / 2; |
|
317 } |
|
318 } |
|
319 |
|
320 input.Multiply(cached_power); |
|
321 // The error introduced by a multiplication of a*b equals |
|
322 // error_a + error_b + error_a*error_b/2^64 + 0.5 |
|
323 // Substituting a with 'input' and b with 'cached_power' we have |
|
324 // error_b = 0.5 (all cached powers have an error of less than 0.5 ulp), |
|
325 // error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64 |
|
326 int error_b = kDenominator / 2; |
|
327 int error_ab = (error == 0 ? 0 : 1); // We round up to 1. |
|
328 int fixed_error = kDenominator / 2; |
|
329 error += error_b + error_ab + fixed_error; |
|
330 |
|
331 old_e = input.e(); |
|
332 input.Normalize(); |
|
333 error <<= old_e - input.e(); |
|
334 |
|
335 // See if the double's significand changes if we add/subtract the error. |
|
336 int order_of_magnitude = DiyFp::kSignificandSize + input.e(); |
|
337 int effective_significand_size = |
|
338 Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude); |
|
339 int precision_digits_count = |
|
340 DiyFp::kSignificandSize - effective_significand_size; |
|
341 if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) { |
|
342 // This can only happen for very small denormals. In this case the |
|
343 // half-way multiplied by the denominator exceeds the range of an uint64. |
|
344 // Simply shift everything to the right. |
|
345 int shift_amount = (precision_digits_count + kDenominatorLog) - |
|
346 DiyFp::kSignificandSize + 1; |
|
347 input.set_f(input.f() >> shift_amount); |
|
348 input.set_e(input.e() + shift_amount); |
|
349 // We add 1 for the lost precision of error, and kDenominator for |
|
350 // the lost precision of input.f(). |
|
351 error = (error >> shift_amount) + 1 + kDenominator; |
|
352 precision_digits_count -= shift_amount; |
|
353 } |
|
354 // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too. |
|
355 ASSERT(DiyFp::kSignificandSize == 64); |
|
356 ASSERT(precision_digits_count < 64); |
|
357 uint64_t one64 = 1; |
|
358 uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1; |
|
359 uint64_t precision_bits = input.f() & precision_bits_mask; |
|
360 uint64_t half_way = one64 << (precision_digits_count - 1); |
|
361 precision_bits *= kDenominator; |
|
362 half_way *= kDenominator; |
|
363 DiyFp rounded_input(input.f() >> precision_digits_count, |
|
364 input.e() + precision_digits_count); |
|
365 if (precision_bits >= half_way + error) { |
|
366 rounded_input.set_f(rounded_input.f() + 1); |
|
367 } |
|
368 // If the last_bits are too close to the half-way case than we are too |
|
369 // inaccurate and round down. In this case we return false so that we can |
|
370 // fall back to a more precise algorithm. |
|
371 |
|
372 *result = Double(rounded_input).value(); |
|
373 if (half_way - error < precision_bits && precision_bits < half_way + error) { |
|
374 // Too imprecise. The caller will have to fall back to a slower version. |
|
375 // However the returned number is guaranteed to be either the correct |
|
376 // double, or the next-lower double. |
|
377 return false; |
|
378 } else { |
|
379 return true; |
|
380 } |
|
381 } |
|
382 |
|
383 |
|
384 // Returns |
|
385 // - -1 if buffer*10^exponent < diy_fp. |
|
386 // - 0 if buffer*10^exponent == diy_fp. |
|
387 // - +1 if buffer*10^exponent > diy_fp. |
|
388 // Preconditions: |
|
389 // buffer.length() + exponent <= kMaxDecimalPower + 1 |
|
390 // buffer.length() + exponent > kMinDecimalPower |
|
391 // buffer.length() <= kMaxDecimalSignificantDigits |
|
392 static int CompareBufferWithDiyFp(Vector<const char> buffer, |
|
393 int exponent, |
|
394 DiyFp diy_fp) { |
|
395 ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1); |
|
396 ASSERT(buffer.length() + exponent > kMinDecimalPower); |
|
397 ASSERT(buffer.length() <= kMaxSignificantDecimalDigits); |
|
398 // Make sure that the Bignum will be able to hold all our numbers. |
|
399 // Our Bignum implementation has a separate field for exponents. Shifts will |
|
400 // consume at most one bigit (< 64 bits). |
|
401 // ln(10) == 3.3219... |
|
402 ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits); |
|
403 Bignum buffer_bignum; |
|
404 Bignum diy_fp_bignum; |
|
405 buffer_bignum.AssignDecimalString(buffer); |
|
406 diy_fp_bignum.AssignUInt64(diy_fp.f()); |
|
407 if (exponent >= 0) { |
|
408 buffer_bignum.MultiplyByPowerOfTen(exponent); |
|
409 } else { |
|
410 diy_fp_bignum.MultiplyByPowerOfTen(-exponent); |
|
411 } |
|
412 if (diy_fp.e() > 0) { |
|
413 diy_fp_bignum.ShiftLeft(diy_fp.e()); |
|
414 } else { |
|
415 buffer_bignum.ShiftLeft(-diy_fp.e()); |
|
416 } |
|
417 return Bignum::Compare(buffer_bignum, diy_fp_bignum); |
|
418 } |
|
419 |
|
420 |
|
421 // Returns true if the guess is the correct double. |
|
422 // Returns false, when guess is either correct or the next-lower double. |
|
423 static bool ComputeGuess(Vector<const char> trimmed, int exponent, |
|
424 double* guess) { |
|
425 if (trimmed.length() == 0) { |
|
426 *guess = 0.0; |
|
427 return true; |
|
428 } |
|
429 if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) { |
|
430 *guess = Double::Infinity(); |
|
431 return true; |
|
432 } |
|
433 if (exponent + trimmed.length() <= kMinDecimalPower) { |
|
434 *guess = 0.0; |
|
435 return true; |
|
436 } |
|
437 |
|
438 if (DoubleStrtod(trimmed, exponent, guess) || |
|
439 DiyFpStrtod(trimmed, exponent, guess)) { |
|
440 return true; |
|
441 } |
|
442 if (*guess == Double::Infinity()) { |
|
443 return true; |
|
444 } |
|
445 return false; |
|
446 } |
|
447 |
|
448 double Strtod(Vector<const char> buffer, int exponent) { |
|
449 char copy_buffer[kMaxSignificantDecimalDigits]; |
|
450 Vector<const char> trimmed; |
|
451 int updated_exponent; |
|
452 TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits, |
|
453 &trimmed, &updated_exponent); |
|
454 exponent = updated_exponent; |
|
455 |
|
456 double guess; |
|
457 bool is_correct = ComputeGuess(trimmed, exponent, &guess); |
|
458 if (is_correct) return guess; |
|
459 |
|
460 DiyFp upper_boundary = Double(guess).UpperBoundary(); |
|
461 int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary); |
|
462 if (comparison < 0) { |
|
463 return guess; |
|
464 } else if (comparison > 0) { |
|
465 return Double(guess).NextDouble(); |
|
466 } else if ((Double(guess).Significand() & 1) == 0) { |
|
467 // Round towards even. |
|
468 return guess; |
|
469 } else { |
|
470 return Double(guess).NextDouble(); |
|
471 } |
|
472 } |
|
473 |
|
474 float Strtof(Vector<const char> buffer, int exponent) { |
|
475 char copy_buffer[kMaxSignificantDecimalDigits]; |
|
476 Vector<const char> trimmed; |
|
477 int updated_exponent; |
|
478 TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits, |
|
479 &trimmed, &updated_exponent); |
|
480 exponent = updated_exponent; |
|
481 |
|
482 double double_guess; |
|
483 bool is_correct = ComputeGuess(trimmed, exponent, &double_guess); |
|
484 |
|
485 float float_guess = static_cast<float>(double_guess); |
|
486 if (float_guess == double_guess) { |
|
487 // This shortcut triggers for integer values. |
|
488 return float_guess; |
|
489 } |
|
490 |
|
491 // We must catch double-rounding. Say the double has been rounded up, and is |
|
492 // now a boundary of a float, and rounds up again. This is why we have to |
|
493 // look at previous too. |
|
494 // Example (in decimal numbers): |
|
495 // input: 12349 |
|
496 // high-precision (4 digits): 1235 |
|
497 // low-precision (3 digits): |
|
498 // when read from input: 123 |
|
499 // when rounded from high precision: 124. |
|
500 // To do this we simply look at the neigbors of the correct result and see |
|
501 // if they would round to the same float. If the guess is not correct we have |
|
502 // to look at four values (since two different doubles could be the correct |
|
503 // double). |
|
504 |
|
505 double double_next = Double(double_guess).NextDouble(); |
|
506 double double_previous = Double(double_guess).PreviousDouble(); |
|
507 |
|
508 float f1 = static_cast<float>(double_previous); |
|
509 #if defined(DEBUG) |
|
510 float f2 = float_guess; |
|
511 #endif |
|
512 float f3 = static_cast<float>(double_next); |
|
513 float f4; |
|
514 if (is_correct) { |
|
515 f4 = f3; |
|
516 } else { |
|
517 double double_next2 = Double(double_next).NextDouble(); |
|
518 f4 = static_cast<float>(double_next2); |
|
519 } |
|
520 ASSERT(f1 <= f2 && f2 <= f3 && f3 <= f4); |
|
521 |
|
522 // If the guess doesn't lie near a single-precision boundary we can simply |
|
523 // return its float-value. |
|
524 if (f1 == f4) { |
|
525 return float_guess; |
|
526 } |
|
527 |
|
528 ASSERT((f1 != f2 && f2 == f3 && f3 == f4) || |
|
529 (f1 == f2 && f2 != f3 && f3 == f4) || |
|
530 (f1 == f2 && f2 == f3 && f3 != f4)); |
|
531 |
|
532 // guess and next are the two possible canditates (in the same way that |
|
533 // double_guess was the lower candidate for a double-precision guess). |
|
534 float guess = f1; |
|
535 float next = f4; |
|
536 DiyFp upper_boundary; |
|
537 if (guess == 0.0f) { |
|
538 float min_float = 1e-45f; |
|
539 upper_boundary = Double(static_cast<double>(min_float) / 2).AsDiyFp(); |
|
540 } else { |
|
541 upper_boundary = Single(guess).UpperBoundary(); |
|
542 } |
|
543 int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary); |
|
544 if (comparison < 0) { |
|
545 return guess; |
|
546 } else if (comparison > 0) { |
|
547 return next; |
|
548 } else if ((Single(guess).Significand() & 1) == 0) { |
|
549 // Round towards even. |
|
550 return guess; |
|
551 } else { |
|
552 return next; |
|
553 } |
|
554 } |
|
555 |
|
556 } // namespace double_conversion |