mfbt/double-conversion/strtod.cc

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

michael@0 1 // Copyright 2010 the V8 project authors. All rights reserved.
michael@0 2 // Redistribution and use in source and binary forms, with or without
michael@0 3 // modification, are permitted provided that the following conditions are
michael@0 4 // met:
michael@0 5 //
michael@0 6 // * Redistributions of source code must retain the above copyright
michael@0 7 // notice, this list of conditions and the following disclaimer.
michael@0 8 // * Redistributions in binary form must reproduce the above
michael@0 9 // copyright notice, this list of conditions and the following
michael@0 10 // disclaimer in the documentation and/or other materials provided
michael@0 11 // with the distribution.
michael@0 12 // * Neither the name of Google Inc. nor the names of its
michael@0 13 // contributors may be used to endorse or promote products derived
michael@0 14 // from this software without specific prior written permission.
michael@0 15 //
michael@0 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
michael@0 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
michael@0 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
michael@0 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
michael@0 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
michael@0 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
michael@0 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
michael@0 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
michael@0 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
michael@0 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
michael@0 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
michael@0 27
michael@0 28 #include <stdarg.h>
michael@0 29 #include <limits.h>
michael@0 30
michael@0 31 #include "strtod.h"
michael@0 32 #include "bignum.h"
michael@0 33 #include "cached-powers.h"
michael@0 34 #include "ieee.h"
michael@0 35
michael@0 36 namespace double_conversion {
michael@0 37
michael@0 38 // 2^53 = 9007199254740992.
michael@0 39 // Any integer with at most 15 decimal digits will hence fit into a double
michael@0 40 // (which has a 53bit significand) without loss of precision.
michael@0 41 static const int kMaxExactDoubleIntegerDecimalDigits = 15;
michael@0 42 // 2^64 = 18446744073709551616 > 10^19
michael@0 43 static const int kMaxUint64DecimalDigits = 19;
michael@0 44
michael@0 45 // Max double: 1.7976931348623157 x 10^308
michael@0 46 // Min non-zero double: 4.9406564584124654 x 10^-324
michael@0 47 // Any x >= 10^309 is interpreted as +infinity.
michael@0 48 // Any x <= 10^-324 is interpreted as 0.
michael@0 49 // Note that 2.5e-324 (despite being smaller than the min double) will be read
michael@0 50 // as non-zero (equal to the min non-zero double).
michael@0 51 static const int kMaxDecimalPower = 309;
michael@0 52 static const int kMinDecimalPower = -324;
michael@0 53
michael@0 54 // 2^64 = 18446744073709551616
michael@0 55 static const uint64_t kMaxUint64 = UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF);
michael@0 56
michael@0 57
michael@0 58 static const double exact_powers_of_ten[] = {
michael@0 59 1.0, // 10^0
michael@0 60 10.0,
michael@0 61 100.0,
michael@0 62 1000.0,
michael@0 63 10000.0,
michael@0 64 100000.0,
michael@0 65 1000000.0,
michael@0 66 10000000.0,
michael@0 67 100000000.0,
michael@0 68 1000000000.0,
michael@0 69 10000000000.0, // 10^10
michael@0 70 100000000000.0,
michael@0 71 1000000000000.0,
michael@0 72 10000000000000.0,
michael@0 73 100000000000000.0,
michael@0 74 1000000000000000.0,
michael@0 75 10000000000000000.0,
michael@0 76 100000000000000000.0,
michael@0 77 1000000000000000000.0,
michael@0 78 10000000000000000000.0,
michael@0 79 100000000000000000000.0, // 10^20
michael@0 80 1000000000000000000000.0,
michael@0 81 // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
michael@0 82 10000000000000000000000.0
michael@0 83 };
michael@0 84 static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten);
michael@0 85
michael@0 86 // Maximum number of significant digits in the decimal representation.
michael@0 87 // In fact the value is 772 (see conversions.cc), but to give us some margin
michael@0 88 // we round up to 780.
michael@0 89 static const int kMaxSignificantDecimalDigits = 780;
michael@0 90
michael@0 91 static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
michael@0 92 for (int i = 0; i < buffer.length(); i++) {
michael@0 93 if (buffer[i] != '0') {
michael@0 94 return buffer.SubVector(i, buffer.length());
michael@0 95 }
michael@0 96 }
michael@0 97 return Vector<const char>(buffer.start(), 0);
michael@0 98 }
michael@0 99
michael@0 100
michael@0 101 static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
michael@0 102 for (int i = buffer.length() - 1; i >= 0; --i) {
michael@0 103 if (buffer[i] != '0') {
michael@0 104 return buffer.SubVector(0, i + 1);
michael@0 105 }
michael@0 106 }
michael@0 107 return Vector<const char>(buffer.start(), 0);
michael@0 108 }
michael@0 109
michael@0 110
michael@0 111 static void CutToMaxSignificantDigits(Vector<const char> buffer,
michael@0 112 int exponent,
michael@0 113 char* significant_buffer,
michael@0 114 int* significant_exponent) {
michael@0 115 for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
michael@0 116 significant_buffer[i] = buffer[i];
michael@0 117 }
michael@0 118 // The input buffer has been trimmed. Therefore the last digit must be
michael@0 119 // different from '0'.
michael@0 120 ASSERT(buffer[buffer.length() - 1] != '0');
michael@0 121 // Set the last digit to be non-zero. This is sufficient to guarantee
michael@0 122 // correct rounding.
michael@0 123 significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
michael@0 124 *significant_exponent =
michael@0 125 exponent + (buffer.length() - kMaxSignificantDecimalDigits);
michael@0 126 }
michael@0 127
michael@0 128
michael@0 129 // Trims the buffer and cuts it to at most kMaxSignificantDecimalDigits.
michael@0 130 // If possible the input-buffer is reused, but if the buffer needs to be
michael@0 131 // modified (due to cutting), then the input needs to be copied into the
michael@0 132 // buffer_copy_space.
michael@0 133 static void TrimAndCut(Vector<const char> buffer, int exponent,
michael@0 134 char* buffer_copy_space, int space_size,
michael@0 135 Vector<const char>* trimmed, int* updated_exponent) {
michael@0 136 Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
michael@0 137 Vector<const char> right_trimmed = TrimTrailingZeros(left_trimmed);
michael@0 138 exponent += left_trimmed.length() - right_trimmed.length();
michael@0 139 if (right_trimmed.length() > kMaxSignificantDecimalDigits) {
michael@0 140 ASSERT(space_size >= kMaxSignificantDecimalDigits);
michael@0 141 CutToMaxSignificantDigits(right_trimmed, exponent,
michael@0 142 buffer_copy_space, updated_exponent);
michael@0 143 *trimmed = Vector<const char>(buffer_copy_space,
michael@0 144 kMaxSignificantDecimalDigits);
michael@0 145 } else {
michael@0 146 *trimmed = right_trimmed;
michael@0 147 *updated_exponent = exponent;
michael@0 148 }
michael@0 149 }
michael@0 150
michael@0 151
michael@0 152 // Reads digits from the buffer and converts them to a uint64.
michael@0 153 // Reads in as many digits as fit into a uint64.
michael@0 154 // When the string starts with "1844674407370955161" no further digit is read.
michael@0 155 // Since 2^64 = 18446744073709551616 it would still be possible read another
michael@0 156 // digit if it was less or equal than 6, but this would complicate the code.
michael@0 157 static uint64_t ReadUint64(Vector<const char> buffer,
michael@0 158 int* number_of_read_digits) {
michael@0 159 uint64_t result = 0;
michael@0 160 int i = 0;
michael@0 161 while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
michael@0 162 int digit = buffer[i++] - '0';
michael@0 163 ASSERT(0 <= digit && digit <= 9);
michael@0 164 result = 10 * result + digit;
michael@0 165 }
michael@0 166 *number_of_read_digits = i;
michael@0 167 return result;
michael@0 168 }
michael@0 169
michael@0 170
michael@0 171 // Reads a DiyFp from the buffer.
michael@0 172 // The returned DiyFp is not necessarily normalized.
michael@0 173 // If remaining_decimals is zero then the returned DiyFp is accurate.
michael@0 174 // Otherwise it has been rounded and has error of at most 1/2 ulp.
michael@0 175 static void ReadDiyFp(Vector<const char> buffer,
michael@0 176 DiyFp* result,
michael@0 177 int* remaining_decimals) {
michael@0 178 int read_digits;
michael@0 179 uint64_t significand = ReadUint64(buffer, &read_digits);
michael@0 180 if (buffer.length() == read_digits) {
michael@0 181 *result = DiyFp(significand, 0);
michael@0 182 *remaining_decimals = 0;
michael@0 183 } else {
michael@0 184 // Round the significand.
michael@0 185 if (buffer[read_digits] >= '5') {
michael@0 186 significand++;
michael@0 187 }
michael@0 188 // Compute the binary exponent.
michael@0 189 int exponent = 0;
michael@0 190 *result = DiyFp(significand, exponent);
michael@0 191 *remaining_decimals = buffer.length() - read_digits;
michael@0 192 }
michael@0 193 }
michael@0 194
michael@0 195
michael@0 196 static bool DoubleStrtod(Vector<const char> trimmed,
michael@0 197 int exponent,
michael@0 198 double* result) {
michael@0 199 #if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
michael@0 200 // On x86 the floating-point stack can be 64 or 80 bits wide. If it is
michael@0 201 // 80 bits wide (as is the case on Linux) then double-rounding occurs and the
michael@0 202 // result is not accurate.
michael@0 203 // We know that Windows32 uses 64 bits and is therefore accurate.
michael@0 204 // Note that the ARM simulator is compiled for 32bits. It therefore exhibits
michael@0 205 // the same problem.
michael@0 206 return false;
michael@0 207 #endif
michael@0 208 if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
michael@0 209 int read_digits;
michael@0 210 // The trimmed input fits into a double.
michael@0 211 // If the 10^exponent (resp. 10^-exponent) fits into a double too then we
michael@0 212 // can compute the result-double simply by multiplying (resp. dividing) the
michael@0 213 // two numbers.
michael@0 214 // This is possible because IEEE guarantees that floating-point operations
michael@0 215 // return the best possible approximation.
michael@0 216 if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
michael@0 217 // 10^-exponent fits into a double.
michael@0 218 *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
michael@0 219 ASSERT(read_digits == trimmed.length());
michael@0 220 *result /= exact_powers_of_ten[-exponent];
michael@0 221 return true;
michael@0 222 }
michael@0 223 if (0 <= exponent && exponent < kExactPowersOfTenSize) {
michael@0 224 // 10^exponent fits into a double.
michael@0 225 *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
michael@0 226 ASSERT(read_digits == trimmed.length());
michael@0 227 *result *= exact_powers_of_ten[exponent];
michael@0 228 return true;
michael@0 229 }
michael@0 230 int remaining_digits =
michael@0 231 kMaxExactDoubleIntegerDecimalDigits - trimmed.length();
michael@0 232 if ((0 <= exponent) &&
michael@0 233 (exponent - remaining_digits < kExactPowersOfTenSize)) {
michael@0 234 // The trimmed string was short and we can multiply it with
michael@0 235 // 10^remaining_digits. As a result the remaining exponent now fits
michael@0 236 // into a double too.
michael@0 237 *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
michael@0 238 ASSERT(read_digits == trimmed.length());
michael@0 239 *result *= exact_powers_of_ten[remaining_digits];
michael@0 240 *result *= exact_powers_of_ten[exponent - remaining_digits];
michael@0 241 return true;
michael@0 242 }
michael@0 243 }
michael@0 244 return false;
michael@0 245 }
michael@0 246
michael@0 247
michael@0 248 // Returns 10^exponent as an exact DiyFp.
michael@0 249 // The given exponent must be in the range [1; kDecimalExponentDistance[.
michael@0 250 static DiyFp AdjustmentPowerOfTen(int exponent) {
michael@0 251 ASSERT(0 < exponent);
michael@0 252 ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance);
michael@0 253 // Simply hardcode the remaining powers for the given decimal exponent
michael@0 254 // distance.
michael@0 255 ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8);
michael@0 256 switch (exponent) {
michael@0 257 case 1: return DiyFp(UINT64_2PART_C(0xa0000000, 00000000), -60);
michael@0 258 case 2: return DiyFp(UINT64_2PART_C(0xc8000000, 00000000), -57);
michael@0 259 case 3: return DiyFp(UINT64_2PART_C(0xfa000000, 00000000), -54);
michael@0 260 case 4: return DiyFp(UINT64_2PART_C(0x9c400000, 00000000), -50);
michael@0 261 case 5: return DiyFp(UINT64_2PART_C(0xc3500000, 00000000), -47);
michael@0 262 case 6: return DiyFp(UINT64_2PART_C(0xf4240000, 00000000), -44);
michael@0 263 case 7: return DiyFp(UINT64_2PART_C(0x98968000, 00000000), -40);
michael@0 264 default:
michael@0 265 UNREACHABLE();
michael@0 266 return DiyFp(0, 0);
michael@0 267 }
michael@0 268 }
michael@0 269
michael@0 270
michael@0 271 // If the function returns true then the result is the correct double.
michael@0 272 // Otherwise it is either the correct double or the double that is just below
michael@0 273 // the correct double.
michael@0 274 static bool DiyFpStrtod(Vector<const char> buffer,
michael@0 275 int exponent,
michael@0 276 double* result) {
michael@0 277 DiyFp input;
michael@0 278 int remaining_decimals;
michael@0 279 ReadDiyFp(buffer, &input, &remaining_decimals);
michael@0 280 // Since we may have dropped some digits the input is not accurate.
michael@0 281 // If remaining_decimals is different than 0 than the error is at most
michael@0 282 // .5 ulp (unit in the last place).
michael@0 283 // We don't want to deal with fractions and therefore keep a common
michael@0 284 // denominator.
michael@0 285 const int kDenominatorLog = 3;
michael@0 286 const int kDenominator = 1 << kDenominatorLog;
michael@0 287 // Move the remaining decimals into the exponent.
michael@0 288 exponent += remaining_decimals;
michael@0 289 int error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
michael@0 290
michael@0 291 int old_e = input.e();
michael@0 292 input.Normalize();
michael@0 293 error <<= old_e - input.e();
michael@0 294
michael@0 295 ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent);
michael@0 296 if (exponent < PowersOfTenCache::kMinDecimalExponent) {
michael@0 297 *result = 0.0;
michael@0 298 return true;
michael@0 299 }
michael@0 300 DiyFp cached_power;
michael@0 301 int cached_decimal_exponent;
michael@0 302 PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
michael@0 303 &cached_power,
michael@0 304 &cached_decimal_exponent);
michael@0 305
michael@0 306 if (cached_decimal_exponent != exponent) {
michael@0 307 int adjustment_exponent = exponent - cached_decimal_exponent;
michael@0 308 DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
michael@0 309 input.Multiply(adjustment_power);
michael@0 310 if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
michael@0 311 // The product of input with the adjustment power fits into a 64 bit
michael@0 312 // integer.
michael@0 313 ASSERT(DiyFp::kSignificandSize == 64);
michael@0 314 } else {
michael@0 315 // The adjustment power is exact. There is hence only an error of 0.5.
michael@0 316 error += kDenominator / 2;
michael@0 317 }
michael@0 318 }
michael@0 319
michael@0 320 input.Multiply(cached_power);
michael@0 321 // The error introduced by a multiplication of a*b equals
michael@0 322 // error_a + error_b + error_a*error_b/2^64 + 0.5
michael@0 323 // Substituting a with 'input' and b with 'cached_power' we have
michael@0 324 // error_b = 0.5 (all cached powers have an error of less than 0.5 ulp),
michael@0 325 // error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
michael@0 326 int error_b = kDenominator / 2;
michael@0 327 int error_ab = (error == 0 ? 0 : 1); // We round up to 1.
michael@0 328 int fixed_error = kDenominator / 2;
michael@0 329 error += error_b + error_ab + fixed_error;
michael@0 330
michael@0 331 old_e = input.e();
michael@0 332 input.Normalize();
michael@0 333 error <<= old_e - input.e();
michael@0 334
michael@0 335 // See if the double's significand changes if we add/subtract the error.
michael@0 336 int order_of_magnitude = DiyFp::kSignificandSize + input.e();
michael@0 337 int effective_significand_size =
michael@0 338 Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
michael@0 339 int precision_digits_count =
michael@0 340 DiyFp::kSignificandSize - effective_significand_size;
michael@0 341 if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
michael@0 342 // This can only happen for very small denormals. In this case the
michael@0 343 // half-way multiplied by the denominator exceeds the range of an uint64.
michael@0 344 // Simply shift everything to the right.
michael@0 345 int shift_amount = (precision_digits_count + kDenominatorLog) -
michael@0 346 DiyFp::kSignificandSize + 1;
michael@0 347 input.set_f(input.f() >> shift_amount);
michael@0 348 input.set_e(input.e() + shift_amount);
michael@0 349 // We add 1 for the lost precision of error, and kDenominator for
michael@0 350 // the lost precision of input.f().
michael@0 351 error = (error >> shift_amount) + 1 + kDenominator;
michael@0 352 precision_digits_count -= shift_amount;
michael@0 353 }
michael@0 354 // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
michael@0 355 ASSERT(DiyFp::kSignificandSize == 64);
michael@0 356 ASSERT(precision_digits_count < 64);
michael@0 357 uint64_t one64 = 1;
michael@0 358 uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
michael@0 359 uint64_t precision_bits = input.f() & precision_bits_mask;
michael@0 360 uint64_t half_way = one64 << (precision_digits_count - 1);
michael@0 361 precision_bits *= kDenominator;
michael@0 362 half_way *= kDenominator;
michael@0 363 DiyFp rounded_input(input.f() >> precision_digits_count,
michael@0 364 input.e() + precision_digits_count);
michael@0 365 if (precision_bits >= half_way + error) {
michael@0 366 rounded_input.set_f(rounded_input.f() + 1);
michael@0 367 }
michael@0 368 // If the last_bits are too close to the half-way case than we are too
michael@0 369 // inaccurate and round down. In this case we return false so that we can
michael@0 370 // fall back to a more precise algorithm.
michael@0 371
michael@0 372 *result = Double(rounded_input).value();
michael@0 373 if (half_way - error < precision_bits && precision_bits < half_way + error) {
michael@0 374 // Too imprecise. The caller will have to fall back to a slower version.
michael@0 375 // However the returned number is guaranteed to be either the correct
michael@0 376 // double, or the next-lower double.
michael@0 377 return false;
michael@0 378 } else {
michael@0 379 return true;
michael@0 380 }
michael@0 381 }
michael@0 382
michael@0 383
michael@0 384 // Returns
michael@0 385 // - -1 if buffer*10^exponent < diy_fp.
michael@0 386 // - 0 if buffer*10^exponent == diy_fp.
michael@0 387 // - +1 if buffer*10^exponent > diy_fp.
michael@0 388 // Preconditions:
michael@0 389 // buffer.length() + exponent <= kMaxDecimalPower + 1
michael@0 390 // buffer.length() + exponent > kMinDecimalPower
michael@0 391 // buffer.length() <= kMaxDecimalSignificantDigits
michael@0 392 static int CompareBufferWithDiyFp(Vector<const char> buffer,
michael@0 393 int exponent,
michael@0 394 DiyFp diy_fp) {
michael@0 395 ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1);
michael@0 396 ASSERT(buffer.length() + exponent > kMinDecimalPower);
michael@0 397 ASSERT(buffer.length() <= kMaxSignificantDecimalDigits);
michael@0 398 // Make sure that the Bignum will be able to hold all our numbers.
michael@0 399 // Our Bignum implementation has a separate field for exponents. Shifts will
michael@0 400 // consume at most one bigit (< 64 bits).
michael@0 401 // ln(10) == 3.3219...
michael@0 402 ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);
michael@0 403 Bignum buffer_bignum;
michael@0 404 Bignum diy_fp_bignum;
michael@0 405 buffer_bignum.AssignDecimalString(buffer);
michael@0 406 diy_fp_bignum.AssignUInt64(diy_fp.f());
michael@0 407 if (exponent >= 0) {
michael@0 408 buffer_bignum.MultiplyByPowerOfTen(exponent);
michael@0 409 } else {
michael@0 410 diy_fp_bignum.MultiplyByPowerOfTen(-exponent);
michael@0 411 }
michael@0 412 if (diy_fp.e() > 0) {
michael@0 413 diy_fp_bignum.ShiftLeft(diy_fp.e());
michael@0 414 } else {
michael@0 415 buffer_bignum.ShiftLeft(-diy_fp.e());
michael@0 416 }
michael@0 417 return Bignum::Compare(buffer_bignum, diy_fp_bignum);
michael@0 418 }
michael@0 419
michael@0 420
michael@0 421 // Returns true if the guess is the correct double.
michael@0 422 // Returns false, when guess is either correct or the next-lower double.
michael@0 423 static bool ComputeGuess(Vector<const char> trimmed, int exponent,
michael@0 424 double* guess) {
michael@0 425 if (trimmed.length() == 0) {
michael@0 426 *guess = 0.0;
michael@0 427 return true;
michael@0 428 }
michael@0 429 if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) {
michael@0 430 *guess = Double::Infinity();
michael@0 431 return true;
michael@0 432 }
michael@0 433 if (exponent + trimmed.length() <= kMinDecimalPower) {
michael@0 434 *guess = 0.0;
michael@0 435 return true;
michael@0 436 }
michael@0 437
michael@0 438 if (DoubleStrtod(trimmed, exponent, guess) ||
michael@0 439 DiyFpStrtod(trimmed, exponent, guess)) {
michael@0 440 return true;
michael@0 441 }
michael@0 442 if (*guess == Double::Infinity()) {
michael@0 443 return true;
michael@0 444 }
michael@0 445 return false;
michael@0 446 }
michael@0 447
michael@0 448 double Strtod(Vector<const char> buffer, int exponent) {
michael@0 449 char copy_buffer[kMaxSignificantDecimalDigits];
michael@0 450 Vector<const char> trimmed;
michael@0 451 int updated_exponent;
michael@0 452 TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits,
michael@0 453 &trimmed, &updated_exponent);
michael@0 454 exponent = updated_exponent;
michael@0 455
michael@0 456 double guess;
michael@0 457 bool is_correct = ComputeGuess(trimmed, exponent, &guess);
michael@0 458 if (is_correct) return guess;
michael@0 459
michael@0 460 DiyFp upper_boundary = Double(guess).UpperBoundary();
michael@0 461 int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary);
michael@0 462 if (comparison < 0) {
michael@0 463 return guess;
michael@0 464 } else if (comparison > 0) {
michael@0 465 return Double(guess).NextDouble();
michael@0 466 } else if ((Double(guess).Significand() & 1) == 0) {
michael@0 467 // Round towards even.
michael@0 468 return guess;
michael@0 469 } else {
michael@0 470 return Double(guess).NextDouble();
michael@0 471 }
michael@0 472 }
michael@0 473
michael@0 474 float Strtof(Vector<const char> buffer, int exponent) {
michael@0 475 char copy_buffer[kMaxSignificantDecimalDigits];
michael@0 476 Vector<const char> trimmed;
michael@0 477 int updated_exponent;
michael@0 478 TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits,
michael@0 479 &trimmed, &updated_exponent);
michael@0 480 exponent = updated_exponent;
michael@0 481
michael@0 482 double double_guess;
michael@0 483 bool is_correct = ComputeGuess(trimmed, exponent, &double_guess);
michael@0 484
michael@0 485 float float_guess = static_cast<float>(double_guess);
michael@0 486 if (float_guess == double_guess) {
michael@0 487 // This shortcut triggers for integer values.
michael@0 488 return float_guess;
michael@0 489 }
michael@0 490
michael@0 491 // We must catch double-rounding. Say the double has been rounded up, and is
michael@0 492 // now a boundary of a float, and rounds up again. This is why we have to
michael@0 493 // look at previous too.
michael@0 494 // Example (in decimal numbers):
michael@0 495 // input: 12349
michael@0 496 // high-precision (4 digits): 1235
michael@0 497 // low-precision (3 digits):
michael@0 498 // when read from input: 123
michael@0 499 // when rounded from high precision: 124.
michael@0 500 // To do this we simply look at the neigbors of the correct result and see
michael@0 501 // if they would round to the same float. If the guess is not correct we have
michael@0 502 // to look at four values (since two different doubles could be the correct
michael@0 503 // double).
michael@0 504
michael@0 505 double double_next = Double(double_guess).NextDouble();
michael@0 506 double double_previous = Double(double_guess).PreviousDouble();
michael@0 507
michael@0 508 float f1 = static_cast<float>(double_previous);
michael@0 509 #if defined(DEBUG)
michael@0 510 float f2 = float_guess;
michael@0 511 #endif
michael@0 512 float f3 = static_cast<float>(double_next);
michael@0 513 float f4;
michael@0 514 if (is_correct) {
michael@0 515 f4 = f3;
michael@0 516 } else {
michael@0 517 double double_next2 = Double(double_next).NextDouble();
michael@0 518 f4 = static_cast<float>(double_next2);
michael@0 519 }
michael@0 520 ASSERT(f1 <= f2 && f2 <= f3 && f3 <= f4);
michael@0 521
michael@0 522 // If the guess doesn't lie near a single-precision boundary we can simply
michael@0 523 // return its float-value.
michael@0 524 if (f1 == f4) {
michael@0 525 return float_guess;
michael@0 526 }
michael@0 527
michael@0 528 ASSERT((f1 != f2 && f2 == f3 && f3 == f4) ||
michael@0 529 (f1 == f2 && f2 != f3 && f3 == f4) ||
michael@0 530 (f1 == f2 && f2 == f3 && f3 != f4));
michael@0 531
michael@0 532 // guess and next are the two possible canditates (in the same way that
michael@0 533 // double_guess was the lower candidate for a double-precision guess).
michael@0 534 float guess = f1;
michael@0 535 float next = f4;
michael@0 536 DiyFp upper_boundary;
michael@0 537 if (guess == 0.0f) {
michael@0 538 float min_float = 1e-45f;
michael@0 539 upper_boundary = Double(static_cast<double>(min_float) / 2).AsDiyFp();
michael@0 540 } else {
michael@0 541 upper_boundary = Single(guess).UpperBoundary();
michael@0 542 }
michael@0 543 int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary);
michael@0 544 if (comparison < 0) {
michael@0 545 return guess;
michael@0 546 } else if (comparison > 0) {
michael@0 547 return next;
michael@0 548 } else if ((Single(guess).Significand() & 1) == 0) {
michael@0 549 // Round towards even.
michael@0 550 return guess;
michael@0 551 } else {
michael@0 552 return next;
michael@0 553 }
michael@0 554 }
michael@0 555
michael@0 556 } // namespace double_conversion

mercurial