mfbt/double-conversion/strtod.cc

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 // Copyright 2010 the V8 project authors. All rights reserved.
     2 // Redistribution and use in source and binary forms, with or without
     3 // modification, are permitted provided that the following conditions are
     4 // met:
     5 //
     6 //     * Redistributions of source code must retain the above copyright
     7 //       notice, this list of conditions and the following disclaimer.
     8 //     * Redistributions in binary form must reproduce the above
     9 //       copyright notice, this list of conditions and the following
    10 //       disclaimer in the documentation and/or other materials provided
    11 //       with the distribution.
    12 //     * Neither the name of Google Inc. nor the names of its
    13 //       contributors may be used to endorse or promote products derived
    14 //       from this software without specific prior written permission.
    15 //
    16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
    20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
    22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
    26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    28 #include <stdarg.h>
    29 #include <limits.h>
    31 #include "strtod.h"
    32 #include "bignum.h"
    33 #include "cached-powers.h"
    34 #include "ieee.h"
    36 namespace double_conversion {
    38 // 2^53 = 9007199254740992.
    39 // Any integer with at most 15 decimal digits will hence fit into a double
    40 // (which has a 53bit significand) without loss of precision.
    41 static const int kMaxExactDoubleIntegerDecimalDigits = 15;
    42 // 2^64 = 18446744073709551616 > 10^19
    43 static const int kMaxUint64DecimalDigits = 19;
    45 // Max double: 1.7976931348623157 x 10^308
    46 // Min non-zero double: 4.9406564584124654 x 10^-324
    47 // Any x >= 10^309 is interpreted as +infinity.
    48 // Any x <= 10^-324 is interpreted as 0.
    49 // Note that 2.5e-324 (despite being smaller than the min double) will be read
    50 // as non-zero (equal to the min non-zero double).
    51 static const int kMaxDecimalPower = 309;
    52 static const int kMinDecimalPower = -324;
    54 // 2^64 = 18446744073709551616
    55 static const uint64_t kMaxUint64 = UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF);
    58 static const double exact_powers_of_ten[] = {
    59   1.0,  // 10^0
    60   10.0,
    61   100.0,
    62   1000.0,
    63   10000.0,
    64   100000.0,
    65   1000000.0,
    66   10000000.0,
    67   100000000.0,
    68   1000000000.0,
    69   10000000000.0,  // 10^10
    70   100000000000.0,
    71   1000000000000.0,
    72   10000000000000.0,
    73   100000000000000.0,
    74   1000000000000000.0,
    75   10000000000000000.0,
    76   100000000000000000.0,
    77   1000000000000000000.0,
    78   10000000000000000000.0,
    79   100000000000000000000.0,  // 10^20
    80   1000000000000000000000.0,
    81   // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
    82   10000000000000000000000.0
    83 };
    84 static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten);
    86 // Maximum number of significant digits in the decimal representation.
    87 // In fact the value is 772 (see conversions.cc), but to give us some margin
    88 // we round up to 780.
    89 static const int kMaxSignificantDecimalDigits = 780;
    91 static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
    92   for (int i = 0; i < buffer.length(); i++) {
    93     if (buffer[i] != '0') {
    94       return buffer.SubVector(i, buffer.length());
    95     }
    96   }
    97   return Vector<const char>(buffer.start(), 0);
    98 }
   101 static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
   102   for (int i = buffer.length() - 1; i >= 0; --i) {
   103     if (buffer[i] != '0') {
   104       return buffer.SubVector(0, i + 1);
   105     }
   106   }
   107   return Vector<const char>(buffer.start(), 0);
   108 }
   111 static void CutToMaxSignificantDigits(Vector<const char> buffer,
   112                                        int exponent,
   113                                        char* significant_buffer,
   114                                        int* significant_exponent) {
   115   for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
   116     significant_buffer[i] = buffer[i];
   117   }
   118   // The input buffer has been trimmed. Therefore the last digit must be
   119   // different from '0'.
   120   ASSERT(buffer[buffer.length() - 1] != '0');
   121   // Set the last digit to be non-zero. This is sufficient to guarantee
   122   // correct rounding.
   123   significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
   124   *significant_exponent =
   125       exponent + (buffer.length() - kMaxSignificantDecimalDigits);
   126 }
   129 // Trims the buffer and cuts it to at most kMaxSignificantDecimalDigits.
   130 // If possible the input-buffer is reused, but if the buffer needs to be
   131 // modified (due to cutting), then the input needs to be copied into the
   132 // buffer_copy_space.
   133 static void TrimAndCut(Vector<const char> buffer, int exponent,
   134                        char* buffer_copy_space, int space_size,
   135                        Vector<const char>* trimmed, int* updated_exponent) {
   136   Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
   137   Vector<const char> right_trimmed = TrimTrailingZeros(left_trimmed);
   138   exponent += left_trimmed.length() - right_trimmed.length();
   139   if (right_trimmed.length() > kMaxSignificantDecimalDigits) {
   140     ASSERT(space_size >= kMaxSignificantDecimalDigits);
   141     CutToMaxSignificantDigits(right_trimmed, exponent,
   142                               buffer_copy_space, updated_exponent);
   143     *trimmed = Vector<const char>(buffer_copy_space,
   144                                  kMaxSignificantDecimalDigits);
   145   } else {
   146     *trimmed = right_trimmed;
   147     *updated_exponent = exponent;
   148   }
   149 }
   152 // Reads digits from the buffer and converts them to a uint64.
   153 // Reads in as many digits as fit into a uint64.
   154 // When the string starts with "1844674407370955161" no further digit is read.
   155 // Since 2^64 = 18446744073709551616 it would still be possible read another
   156 // digit if it was less or equal than 6, but this would complicate the code.
   157 static uint64_t ReadUint64(Vector<const char> buffer,
   158                            int* number_of_read_digits) {
   159   uint64_t result = 0;
   160   int i = 0;
   161   while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
   162     int digit = buffer[i++] - '0';
   163     ASSERT(0 <= digit && digit <= 9);
   164     result = 10 * result + digit;
   165   }
   166   *number_of_read_digits = i;
   167   return result;
   168 }
   171 // Reads a DiyFp from the buffer.
   172 // The returned DiyFp is not necessarily normalized.
   173 // If remaining_decimals is zero then the returned DiyFp is accurate.
   174 // Otherwise it has been rounded and has error of at most 1/2 ulp.
   175 static void ReadDiyFp(Vector<const char> buffer,
   176                       DiyFp* result,
   177                       int* remaining_decimals) {
   178   int read_digits;
   179   uint64_t significand = ReadUint64(buffer, &read_digits);
   180   if (buffer.length() == read_digits) {
   181     *result = DiyFp(significand, 0);
   182     *remaining_decimals = 0;
   183   } else {
   184     // Round the significand.
   185     if (buffer[read_digits] >= '5') {
   186       significand++;
   187     }
   188     // Compute the binary exponent.
   189     int exponent = 0;
   190     *result = DiyFp(significand, exponent);
   191     *remaining_decimals = buffer.length() - read_digits;
   192   }
   193 }
   196 static bool DoubleStrtod(Vector<const char> trimmed,
   197                          int exponent,
   198                          double* result) {
   199 #if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
   200   // On x86 the floating-point stack can be 64 or 80 bits wide. If it is
   201   // 80 bits wide (as is the case on Linux) then double-rounding occurs and the
   202   // result is not accurate.
   203   // We know that Windows32 uses 64 bits and is therefore accurate.
   204   // Note that the ARM simulator is compiled for 32bits. It therefore exhibits
   205   // the same problem.
   206   return false;
   207 #endif
   208   if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
   209     int read_digits;
   210     // The trimmed input fits into a double.
   211     // If the 10^exponent (resp. 10^-exponent) fits into a double too then we
   212     // can compute the result-double simply by multiplying (resp. dividing) the
   213     // two numbers.
   214     // This is possible because IEEE guarantees that floating-point operations
   215     // return the best possible approximation.
   216     if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
   217       // 10^-exponent fits into a double.
   218       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
   219       ASSERT(read_digits == trimmed.length());
   220       *result /= exact_powers_of_ten[-exponent];
   221       return true;
   222     }
   223     if (0 <= exponent && exponent < kExactPowersOfTenSize) {
   224       // 10^exponent fits into a double.
   225       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
   226       ASSERT(read_digits == trimmed.length());
   227       *result *= exact_powers_of_ten[exponent];
   228       return true;
   229     }
   230     int remaining_digits =
   231         kMaxExactDoubleIntegerDecimalDigits - trimmed.length();
   232     if ((0 <= exponent) &&
   233         (exponent - remaining_digits < kExactPowersOfTenSize)) {
   234       // The trimmed string was short and we can multiply it with
   235       // 10^remaining_digits. As a result the remaining exponent now fits
   236       // into a double too.
   237       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
   238       ASSERT(read_digits == trimmed.length());
   239       *result *= exact_powers_of_ten[remaining_digits];
   240       *result *= exact_powers_of_ten[exponent - remaining_digits];
   241       return true;
   242     }
   243   }
   244   return false;
   245 }
   248 // Returns 10^exponent as an exact DiyFp.
   249 // The given exponent must be in the range [1; kDecimalExponentDistance[.
   250 static DiyFp AdjustmentPowerOfTen(int exponent) {
   251   ASSERT(0 < exponent);
   252   ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance);
   253   // Simply hardcode the remaining powers for the given decimal exponent
   254   // distance.
   255   ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8);
   256   switch (exponent) {
   257     case 1: return DiyFp(UINT64_2PART_C(0xa0000000, 00000000), -60);
   258     case 2: return DiyFp(UINT64_2PART_C(0xc8000000, 00000000), -57);
   259     case 3: return DiyFp(UINT64_2PART_C(0xfa000000, 00000000), -54);
   260     case 4: return DiyFp(UINT64_2PART_C(0x9c400000, 00000000), -50);
   261     case 5: return DiyFp(UINT64_2PART_C(0xc3500000, 00000000), -47);
   262     case 6: return DiyFp(UINT64_2PART_C(0xf4240000, 00000000), -44);
   263     case 7: return DiyFp(UINT64_2PART_C(0x98968000, 00000000), -40);
   264     default:
   265       UNREACHABLE();
   266       return DiyFp(0, 0);
   267   }
   268 }
   271 // If the function returns true then the result is the correct double.
   272 // Otherwise it is either the correct double or the double that is just below
   273 // the correct double.
   274 static bool DiyFpStrtod(Vector<const char> buffer,
   275                         int exponent,
   276                         double* result) {
   277   DiyFp input;
   278   int remaining_decimals;
   279   ReadDiyFp(buffer, &input, &remaining_decimals);
   280   // Since we may have dropped some digits the input is not accurate.
   281   // If remaining_decimals is different than 0 than the error is at most
   282   // .5 ulp (unit in the last place).
   283   // We don't want to deal with fractions and therefore keep a common
   284   // denominator.
   285   const int kDenominatorLog = 3;
   286   const int kDenominator = 1 << kDenominatorLog;
   287   // Move the remaining decimals into the exponent.
   288   exponent += remaining_decimals;
   289   int error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
   291   int old_e = input.e();
   292   input.Normalize();
   293   error <<= old_e - input.e();
   295   ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent);
   296   if (exponent < PowersOfTenCache::kMinDecimalExponent) {
   297     *result = 0.0;
   298     return true;
   299   }
   300   DiyFp cached_power;
   301   int cached_decimal_exponent;
   302   PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
   303                                                      &cached_power,
   304                                                      &cached_decimal_exponent);
   306   if (cached_decimal_exponent != exponent) {
   307     int adjustment_exponent = exponent - cached_decimal_exponent;
   308     DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
   309     input.Multiply(adjustment_power);
   310     if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
   311       // The product of input with the adjustment power fits into a 64 bit
   312       // integer.
   313       ASSERT(DiyFp::kSignificandSize == 64);
   314     } else {
   315       // The adjustment power is exact. There is hence only an error of 0.5.
   316       error += kDenominator / 2;
   317     }
   318   }
   320   input.Multiply(cached_power);
   321   // The error introduced by a multiplication of a*b equals
   322   //   error_a + error_b + error_a*error_b/2^64 + 0.5
   323   // Substituting a with 'input' and b with 'cached_power' we have
   324   //   error_b = 0.5  (all cached powers have an error of less than 0.5 ulp),
   325   //   error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
   326   int error_b = kDenominator / 2;
   327   int error_ab = (error == 0 ? 0 : 1);  // We round up to 1.
   328   int fixed_error = kDenominator / 2;
   329   error += error_b + error_ab + fixed_error;
   331   old_e = input.e();
   332   input.Normalize();
   333   error <<= old_e - input.e();
   335   // See if the double's significand changes if we add/subtract the error.
   336   int order_of_magnitude = DiyFp::kSignificandSize + input.e();
   337   int effective_significand_size =
   338       Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
   339   int precision_digits_count =
   340       DiyFp::kSignificandSize - effective_significand_size;
   341   if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
   342     // This can only happen for very small denormals. In this case the
   343     // half-way multiplied by the denominator exceeds the range of an uint64.
   344     // Simply shift everything to the right.
   345     int shift_amount = (precision_digits_count + kDenominatorLog) -
   346         DiyFp::kSignificandSize + 1;
   347     input.set_f(input.f() >> shift_amount);
   348     input.set_e(input.e() + shift_amount);
   349     // We add 1 for the lost precision of error, and kDenominator for
   350     // the lost precision of input.f().
   351     error = (error >> shift_amount) + 1 + kDenominator;
   352     precision_digits_count -= shift_amount;
   353   }
   354   // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
   355   ASSERT(DiyFp::kSignificandSize == 64);
   356   ASSERT(precision_digits_count < 64);
   357   uint64_t one64 = 1;
   358   uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
   359   uint64_t precision_bits = input.f() & precision_bits_mask;
   360   uint64_t half_way = one64 << (precision_digits_count - 1);
   361   precision_bits *= kDenominator;
   362   half_way *= kDenominator;
   363   DiyFp rounded_input(input.f() >> precision_digits_count,
   364                       input.e() + precision_digits_count);
   365   if (precision_bits >= half_way + error) {
   366     rounded_input.set_f(rounded_input.f() + 1);
   367   }
   368   // If the last_bits are too close to the half-way case than we are too
   369   // inaccurate and round down. In this case we return false so that we can
   370   // fall back to a more precise algorithm.
   372   *result = Double(rounded_input).value();
   373   if (half_way - error < precision_bits && precision_bits < half_way + error) {
   374     // Too imprecise. The caller will have to fall back to a slower version.
   375     // However the returned number is guaranteed to be either the correct
   376     // double, or the next-lower double.
   377     return false;
   378   } else {
   379     return true;
   380   }
   381 }
   384 // Returns
   385 //   - -1 if buffer*10^exponent < diy_fp.
   386 //   -  0 if buffer*10^exponent == diy_fp.
   387 //   - +1 if buffer*10^exponent > diy_fp.
   388 // Preconditions:
   389 //   buffer.length() + exponent <= kMaxDecimalPower + 1
   390 //   buffer.length() + exponent > kMinDecimalPower
   391 //   buffer.length() <= kMaxDecimalSignificantDigits
   392 static int CompareBufferWithDiyFp(Vector<const char> buffer,
   393                                   int exponent,
   394                                   DiyFp diy_fp) {
   395   ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1);
   396   ASSERT(buffer.length() + exponent > kMinDecimalPower);
   397   ASSERT(buffer.length() <= kMaxSignificantDecimalDigits);
   398   // Make sure that the Bignum will be able to hold all our numbers.
   399   // Our Bignum implementation has a separate field for exponents. Shifts will
   400   // consume at most one bigit (< 64 bits).
   401   // ln(10) == 3.3219...
   402   ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);
   403   Bignum buffer_bignum;
   404   Bignum diy_fp_bignum;
   405   buffer_bignum.AssignDecimalString(buffer);
   406   diy_fp_bignum.AssignUInt64(diy_fp.f());
   407   if (exponent >= 0) {
   408     buffer_bignum.MultiplyByPowerOfTen(exponent);
   409   } else {
   410     diy_fp_bignum.MultiplyByPowerOfTen(-exponent);
   411   }
   412   if (diy_fp.e() > 0) {
   413     diy_fp_bignum.ShiftLeft(diy_fp.e());
   414   } else {
   415     buffer_bignum.ShiftLeft(-diy_fp.e());
   416   }
   417   return Bignum::Compare(buffer_bignum, diy_fp_bignum);
   418 }
   421 // Returns true if the guess is the correct double.
   422 // Returns false, when guess is either correct or the next-lower double.
   423 static bool ComputeGuess(Vector<const char> trimmed, int exponent,
   424                          double* guess) {
   425   if (trimmed.length() == 0) {
   426     *guess = 0.0;
   427     return true;
   428   }
   429   if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) {
   430     *guess = Double::Infinity();
   431     return true;
   432   }
   433   if (exponent + trimmed.length() <= kMinDecimalPower) {
   434     *guess = 0.0;
   435     return true;
   436   }
   438   if (DoubleStrtod(trimmed, exponent, guess) ||
   439       DiyFpStrtod(trimmed, exponent, guess)) {
   440     return true;
   441   }
   442   if (*guess == Double::Infinity()) {
   443     return true;
   444   }
   445   return false;
   446 }
   448 double Strtod(Vector<const char> buffer, int exponent) {
   449   char copy_buffer[kMaxSignificantDecimalDigits];
   450   Vector<const char> trimmed;
   451   int updated_exponent;
   452   TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits,
   453              &trimmed, &updated_exponent);
   454   exponent = updated_exponent;
   456   double guess;
   457   bool is_correct = ComputeGuess(trimmed, exponent, &guess);
   458   if (is_correct) return guess;
   460   DiyFp upper_boundary = Double(guess).UpperBoundary();
   461   int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary);
   462   if (comparison < 0) {
   463     return guess;
   464   } else if (comparison > 0) {
   465     return Double(guess).NextDouble();
   466   } else if ((Double(guess).Significand() & 1) == 0) {
   467     // Round towards even.
   468     return guess;
   469   } else {
   470     return Double(guess).NextDouble();
   471   }
   472 }
   474 float Strtof(Vector<const char> buffer, int exponent) {
   475   char copy_buffer[kMaxSignificantDecimalDigits];
   476   Vector<const char> trimmed;
   477   int updated_exponent;
   478   TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits,
   479              &trimmed, &updated_exponent);
   480   exponent = updated_exponent;
   482   double double_guess;
   483   bool is_correct = ComputeGuess(trimmed, exponent, &double_guess);
   485   float float_guess = static_cast<float>(double_guess);
   486   if (float_guess == double_guess) {
   487     // This shortcut triggers for integer values.
   488     return float_guess;
   489   }
   491   // We must catch double-rounding. Say the double has been rounded up, and is
   492   // now a boundary of a float, and rounds up again. This is why we have to
   493   // look at previous too.
   494   // Example (in decimal numbers):
   495   //    input: 12349
   496   //    high-precision (4 digits): 1235
   497   //    low-precision (3 digits):
   498   //       when read from input: 123
   499   //       when rounded from high precision: 124.
   500   // To do this we simply look at the neigbors of the correct result and see
   501   // if they would round to the same float. If the guess is not correct we have
   502   // to look at four values (since two different doubles could be the correct
   503   // double).
   505   double double_next = Double(double_guess).NextDouble();
   506   double double_previous = Double(double_guess).PreviousDouble();
   508   float f1 = static_cast<float>(double_previous);
   509 #if defined(DEBUG)
   510   float f2 = float_guess;
   511 #endif
   512   float f3 = static_cast<float>(double_next);
   513   float f4;
   514   if (is_correct) {
   515     f4 = f3;
   516   } else {
   517     double double_next2 = Double(double_next).NextDouble();
   518     f4 = static_cast<float>(double_next2);
   519   }
   520   ASSERT(f1 <= f2 && f2 <= f3 && f3 <= f4);
   522   // If the guess doesn't lie near a single-precision boundary we can simply
   523   // return its float-value.
   524   if (f1 == f4) {
   525     return float_guess;
   526   }
   528   ASSERT((f1 != f2 && f2 == f3 && f3 == f4) ||
   529          (f1 == f2 && f2 != f3 && f3 == f4) ||
   530          (f1 == f2 && f2 == f3 && f3 != f4));
   532   // guess and next are the two possible canditates (in the same way that
   533   // double_guess was the lower candidate for a double-precision guess).
   534   float guess = f1;
   535   float next = f4;
   536   DiyFp upper_boundary;
   537   if (guess == 0.0f) {
   538     float min_float = 1e-45f;
   539     upper_boundary = Double(static_cast<double>(min_float) / 2).AsDiyFp();
   540   } else {
   541     upper_boundary = Single(guess).UpperBoundary();
   542   }
   543   int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary);
   544   if (comparison < 0) {
   545     return guess;
   546   } else if (comparison > 0) {
   547     return next;
   548   } else if ((Single(guess).Significand() & 1) == 0) {
   549     // Round towards even.
   550     return guess;
   551   } else {
   552     return next;
   553   }
   554 }
   556 }  // namespace double_conversion

mercurial