1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/mfbt/double-conversion/strtod.cc Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,556 @@ 1.4 +// Copyright 2010 the V8 project authors. All rights reserved. 1.5 +// Redistribution and use in source and binary forms, with or without 1.6 +// modification, are permitted provided that the following conditions are 1.7 +// met: 1.8 +// 1.9 +// * Redistributions of source code must retain the above copyright 1.10 +// notice, this list of conditions and the following disclaimer. 1.11 +// * Redistributions in binary form must reproduce the above 1.12 +// copyright notice, this list of conditions and the following 1.13 +// disclaimer in the documentation and/or other materials provided 1.14 +// with the distribution. 1.15 +// * Neither the name of Google Inc. nor the names of its 1.16 +// contributors may be used to endorse or promote products derived 1.17 +// from this software without specific prior written permission. 1.18 +// 1.19 +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 1.20 +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 1.21 +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 1.22 +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 1.23 +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 1.24 +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 1.25 +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 1.26 +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 1.27 +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 1.28 +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 1.29 +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 1.30 + 1.31 +#include <stdarg.h> 1.32 +#include <limits.h> 1.33 + 1.34 +#include "strtod.h" 1.35 +#include "bignum.h" 1.36 +#include "cached-powers.h" 1.37 +#include "ieee.h" 1.38 + 1.39 +namespace double_conversion { 1.40 + 1.41 +// 2^53 = 9007199254740992. 1.42 +// Any integer with at most 15 decimal digits will hence fit into a double 1.43 +// (which has a 53bit significand) without loss of precision. 1.44 +static const int kMaxExactDoubleIntegerDecimalDigits = 15; 1.45 +// 2^64 = 18446744073709551616 > 10^19 1.46 +static const int kMaxUint64DecimalDigits = 19; 1.47 + 1.48 +// Max double: 1.7976931348623157 x 10^308 1.49 +// Min non-zero double: 4.9406564584124654 x 10^-324 1.50 +// Any x >= 10^309 is interpreted as +infinity. 1.51 +// Any x <= 10^-324 is interpreted as 0. 1.52 +// Note that 2.5e-324 (despite being smaller than the min double) will be read 1.53 +// as non-zero (equal to the min non-zero double). 1.54 +static const int kMaxDecimalPower = 309; 1.55 +static const int kMinDecimalPower = -324; 1.56 + 1.57 +// 2^64 = 18446744073709551616 1.58 +static const uint64_t kMaxUint64 = UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF); 1.59 + 1.60 + 1.61 +static const double exact_powers_of_ten[] = { 1.62 + 1.0, // 10^0 1.63 + 10.0, 1.64 + 100.0, 1.65 + 1000.0, 1.66 + 10000.0, 1.67 + 100000.0, 1.68 + 1000000.0, 1.69 + 10000000.0, 1.70 + 100000000.0, 1.71 + 1000000000.0, 1.72 + 10000000000.0, // 10^10 1.73 + 100000000000.0, 1.74 + 1000000000000.0, 1.75 + 10000000000000.0, 1.76 + 100000000000000.0, 1.77 + 1000000000000000.0, 1.78 + 10000000000000000.0, 1.79 + 100000000000000000.0, 1.80 + 1000000000000000000.0, 1.81 + 10000000000000000000.0, 1.82 + 100000000000000000000.0, // 10^20 1.83 + 1000000000000000000000.0, 1.84 + // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22 1.85 + 10000000000000000000000.0 1.86 +}; 1.87 +static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten); 1.88 + 1.89 +// Maximum number of significant digits in the decimal representation. 1.90 +// In fact the value is 772 (see conversions.cc), but to give us some margin 1.91 +// we round up to 780. 1.92 +static const int kMaxSignificantDecimalDigits = 780; 1.93 + 1.94 +static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) { 1.95 + for (int i = 0; i < buffer.length(); i++) { 1.96 + if (buffer[i] != '0') { 1.97 + return buffer.SubVector(i, buffer.length()); 1.98 + } 1.99 + } 1.100 + return Vector<const char>(buffer.start(), 0); 1.101 +} 1.102 + 1.103 + 1.104 +static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) { 1.105 + for (int i = buffer.length() - 1; i >= 0; --i) { 1.106 + if (buffer[i] != '0') { 1.107 + return buffer.SubVector(0, i + 1); 1.108 + } 1.109 + } 1.110 + return Vector<const char>(buffer.start(), 0); 1.111 +} 1.112 + 1.113 + 1.114 +static void CutToMaxSignificantDigits(Vector<const char> buffer, 1.115 + int exponent, 1.116 + char* significant_buffer, 1.117 + int* significant_exponent) { 1.118 + for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) { 1.119 + significant_buffer[i] = buffer[i]; 1.120 + } 1.121 + // The input buffer has been trimmed. Therefore the last digit must be 1.122 + // different from '0'. 1.123 + ASSERT(buffer[buffer.length() - 1] != '0'); 1.124 + // Set the last digit to be non-zero. This is sufficient to guarantee 1.125 + // correct rounding. 1.126 + significant_buffer[kMaxSignificantDecimalDigits - 1] = '1'; 1.127 + *significant_exponent = 1.128 + exponent + (buffer.length() - kMaxSignificantDecimalDigits); 1.129 +} 1.130 + 1.131 + 1.132 +// Trims the buffer and cuts it to at most kMaxSignificantDecimalDigits. 1.133 +// If possible the input-buffer is reused, but if the buffer needs to be 1.134 +// modified (due to cutting), then the input needs to be copied into the 1.135 +// buffer_copy_space. 1.136 +static void TrimAndCut(Vector<const char> buffer, int exponent, 1.137 + char* buffer_copy_space, int space_size, 1.138 + Vector<const char>* trimmed, int* updated_exponent) { 1.139 + Vector<const char> left_trimmed = TrimLeadingZeros(buffer); 1.140 + Vector<const char> right_trimmed = TrimTrailingZeros(left_trimmed); 1.141 + exponent += left_trimmed.length() - right_trimmed.length(); 1.142 + if (right_trimmed.length() > kMaxSignificantDecimalDigits) { 1.143 + ASSERT(space_size >= kMaxSignificantDecimalDigits); 1.144 + CutToMaxSignificantDigits(right_trimmed, exponent, 1.145 + buffer_copy_space, updated_exponent); 1.146 + *trimmed = Vector<const char>(buffer_copy_space, 1.147 + kMaxSignificantDecimalDigits); 1.148 + } else { 1.149 + *trimmed = right_trimmed; 1.150 + *updated_exponent = exponent; 1.151 + } 1.152 +} 1.153 + 1.154 + 1.155 +// Reads digits from the buffer and converts them to a uint64. 1.156 +// Reads in as many digits as fit into a uint64. 1.157 +// When the string starts with "1844674407370955161" no further digit is read. 1.158 +// Since 2^64 = 18446744073709551616 it would still be possible read another 1.159 +// digit if it was less or equal than 6, but this would complicate the code. 1.160 +static uint64_t ReadUint64(Vector<const char> buffer, 1.161 + int* number_of_read_digits) { 1.162 + uint64_t result = 0; 1.163 + int i = 0; 1.164 + while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) { 1.165 + int digit = buffer[i++] - '0'; 1.166 + ASSERT(0 <= digit && digit <= 9); 1.167 + result = 10 * result + digit; 1.168 + } 1.169 + *number_of_read_digits = i; 1.170 + return result; 1.171 +} 1.172 + 1.173 + 1.174 +// Reads a DiyFp from the buffer. 1.175 +// The returned DiyFp is not necessarily normalized. 1.176 +// If remaining_decimals is zero then the returned DiyFp is accurate. 1.177 +// Otherwise it has been rounded and has error of at most 1/2 ulp. 1.178 +static void ReadDiyFp(Vector<const char> buffer, 1.179 + DiyFp* result, 1.180 + int* remaining_decimals) { 1.181 + int read_digits; 1.182 + uint64_t significand = ReadUint64(buffer, &read_digits); 1.183 + if (buffer.length() == read_digits) { 1.184 + *result = DiyFp(significand, 0); 1.185 + *remaining_decimals = 0; 1.186 + } else { 1.187 + // Round the significand. 1.188 + if (buffer[read_digits] >= '5') { 1.189 + significand++; 1.190 + } 1.191 + // Compute the binary exponent. 1.192 + int exponent = 0; 1.193 + *result = DiyFp(significand, exponent); 1.194 + *remaining_decimals = buffer.length() - read_digits; 1.195 + } 1.196 +} 1.197 + 1.198 + 1.199 +static bool DoubleStrtod(Vector<const char> trimmed, 1.200 + int exponent, 1.201 + double* result) { 1.202 +#if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS) 1.203 + // On x86 the floating-point stack can be 64 or 80 bits wide. If it is 1.204 + // 80 bits wide (as is the case on Linux) then double-rounding occurs and the 1.205 + // result is not accurate. 1.206 + // We know that Windows32 uses 64 bits and is therefore accurate. 1.207 + // Note that the ARM simulator is compiled for 32bits. It therefore exhibits 1.208 + // the same problem. 1.209 + return false; 1.210 +#endif 1.211 + if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) { 1.212 + int read_digits; 1.213 + // The trimmed input fits into a double. 1.214 + // If the 10^exponent (resp. 10^-exponent) fits into a double too then we 1.215 + // can compute the result-double simply by multiplying (resp. dividing) the 1.216 + // two numbers. 1.217 + // This is possible because IEEE guarantees that floating-point operations 1.218 + // return the best possible approximation. 1.219 + if (exponent < 0 && -exponent < kExactPowersOfTenSize) { 1.220 + // 10^-exponent fits into a double. 1.221 + *result = static_cast<double>(ReadUint64(trimmed, &read_digits)); 1.222 + ASSERT(read_digits == trimmed.length()); 1.223 + *result /= exact_powers_of_ten[-exponent]; 1.224 + return true; 1.225 + } 1.226 + if (0 <= exponent && exponent < kExactPowersOfTenSize) { 1.227 + // 10^exponent fits into a double. 1.228 + *result = static_cast<double>(ReadUint64(trimmed, &read_digits)); 1.229 + ASSERT(read_digits == trimmed.length()); 1.230 + *result *= exact_powers_of_ten[exponent]; 1.231 + return true; 1.232 + } 1.233 + int remaining_digits = 1.234 + kMaxExactDoubleIntegerDecimalDigits - trimmed.length(); 1.235 + if ((0 <= exponent) && 1.236 + (exponent - remaining_digits < kExactPowersOfTenSize)) { 1.237 + // The trimmed string was short and we can multiply it with 1.238 + // 10^remaining_digits. As a result the remaining exponent now fits 1.239 + // into a double too. 1.240 + *result = static_cast<double>(ReadUint64(trimmed, &read_digits)); 1.241 + ASSERT(read_digits == trimmed.length()); 1.242 + *result *= exact_powers_of_ten[remaining_digits]; 1.243 + *result *= exact_powers_of_ten[exponent - remaining_digits]; 1.244 + return true; 1.245 + } 1.246 + } 1.247 + return false; 1.248 +} 1.249 + 1.250 + 1.251 +// Returns 10^exponent as an exact DiyFp. 1.252 +// The given exponent must be in the range [1; kDecimalExponentDistance[. 1.253 +static DiyFp AdjustmentPowerOfTen(int exponent) { 1.254 + ASSERT(0 < exponent); 1.255 + ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance); 1.256 + // Simply hardcode the remaining powers for the given decimal exponent 1.257 + // distance. 1.258 + ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8); 1.259 + switch (exponent) { 1.260 + case 1: return DiyFp(UINT64_2PART_C(0xa0000000, 00000000), -60); 1.261 + case 2: return DiyFp(UINT64_2PART_C(0xc8000000, 00000000), -57); 1.262 + case 3: return DiyFp(UINT64_2PART_C(0xfa000000, 00000000), -54); 1.263 + case 4: return DiyFp(UINT64_2PART_C(0x9c400000, 00000000), -50); 1.264 + case 5: return DiyFp(UINT64_2PART_C(0xc3500000, 00000000), -47); 1.265 + case 6: return DiyFp(UINT64_2PART_C(0xf4240000, 00000000), -44); 1.266 + case 7: return DiyFp(UINT64_2PART_C(0x98968000, 00000000), -40); 1.267 + default: 1.268 + UNREACHABLE(); 1.269 + return DiyFp(0, 0); 1.270 + } 1.271 +} 1.272 + 1.273 + 1.274 +// If the function returns true then the result is the correct double. 1.275 +// Otherwise it is either the correct double or the double that is just below 1.276 +// the correct double. 1.277 +static bool DiyFpStrtod(Vector<const char> buffer, 1.278 + int exponent, 1.279 + double* result) { 1.280 + DiyFp input; 1.281 + int remaining_decimals; 1.282 + ReadDiyFp(buffer, &input, &remaining_decimals); 1.283 + // Since we may have dropped some digits the input is not accurate. 1.284 + // If remaining_decimals is different than 0 than the error is at most 1.285 + // .5 ulp (unit in the last place). 1.286 + // We don't want to deal with fractions and therefore keep a common 1.287 + // denominator. 1.288 + const int kDenominatorLog = 3; 1.289 + const int kDenominator = 1 << kDenominatorLog; 1.290 + // Move the remaining decimals into the exponent. 1.291 + exponent += remaining_decimals; 1.292 + int error = (remaining_decimals == 0 ? 0 : kDenominator / 2); 1.293 + 1.294 + int old_e = input.e(); 1.295 + input.Normalize(); 1.296 + error <<= old_e - input.e(); 1.297 + 1.298 + ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent); 1.299 + if (exponent < PowersOfTenCache::kMinDecimalExponent) { 1.300 + *result = 0.0; 1.301 + return true; 1.302 + } 1.303 + DiyFp cached_power; 1.304 + int cached_decimal_exponent; 1.305 + PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent, 1.306 + &cached_power, 1.307 + &cached_decimal_exponent); 1.308 + 1.309 + if (cached_decimal_exponent != exponent) { 1.310 + int adjustment_exponent = exponent - cached_decimal_exponent; 1.311 + DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent); 1.312 + input.Multiply(adjustment_power); 1.313 + if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) { 1.314 + // The product of input with the adjustment power fits into a 64 bit 1.315 + // integer. 1.316 + ASSERT(DiyFp::kSignificandSize == 64); 1.317 + } else { 1.318 + // The adjustment power is exact. There is hence only an error of 0.5. 1.319 + error += kDenominator / 2; 1.320 + } 1.321 + } 1.322 + 1.323 + input.Multiply(cached_power); 1.324 + // The error introduced by a multiplication of a*b equals 1.325 + // error_a + error_b + error_a*error_b/2^64 + 0.5 1.326 + // Substituting a with 'input' and b with 'cached_power' we have 1.327 + // error_b = 0.5 (all cached powers have an error of less than 0.5 ulp), 1.328 + // error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64 1.329 + int error_b = kDenominator / 2; 1.330 + int error_ab = (error == 0 ? 0 : 1); // We round up to 1. 1.331 + int fixed_error = kDenominator / 2; 1.332 + error += error_b + error_ab + fixed_error; 1.333 + 1.334 + old_e = input.e(); 1.335 + input.Normalize(); 1.336 + error <<= old_e - input.e(); 1.337 + 1.338 + // See if the double's significand changes if we add/subtract the error. 1.339 + int order_of_magnitude = DiyFp::kSignificandSize + input.e(); 1.340 + int effective_significand_size = 1.341 + Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude); 1.342 + int precision_digits_count = 1.343 + DiyFp::kSignificandSize - effective_significand_size; 1.344 + if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) { 1.345 + // This can only happen for very small denormals. In this case the 1.346 + // half-way multiplied by the denominator exceeds the range of an uint64. 1.347 + // Simply shift everything to the right. 1.348 + int shift_amount = (precision_digits_count + kDenominatorLog) - 1.349 + DiyFp::kSignificandSize + 1; 1.350 + input.set_f(input.f() >> shift_amount); 1.351 + input.set_e(input.e() + shift_amount); 1.352 + // We add 1 for the lost precision of error, and kDenominator for 1.353 + // the lost precision of input.f(). 1.354 + error = (error >> shift_amount) + 1 + kDenominator; 1.355 + precision_digits_count -= shift_amount; 1.356 + } 1.357 + // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too. 1.358 + ASSERT(DiyFp::kSignificandSize == 64); 1.359 + ASSERT(precision_digits_count < 64); 1.360 + uint64_t one64 = 1; 1.361 + uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1; 1.362 + uint64_t precision_bits = input.f() & precision_bits_mask; 1.363 + uint64_t half_way = one64 << (precision_digits_count - 1); 1.364 + precision_bits *= kDenominator; 1.365 + half_way *= kDenominator; 1.366 + DiyFp rounded_input(input.f() >> precision_digits_count, 1.367 + input.e() + precision_digits_count); 1.368 + if (precision_bits >= half_way + error) { 1.369 + rounded_input.set_f(rounded_input.f() + 1); 1.370 + } 1.371 + // If the last_bits are too close to the half-way case than we are too 1.372 + // inaccurate and round down. In this case we return false so that we can 1.373 + // fall back to a more precise algorithm. 1.374 + 1.375 + *result = Double(rounded_input).value(); 1.376 + if (half_way - error < precision_bits && precision_bits < half_way + error) { 1.377 + // Too imprecise. The caller will have to fall back to a slower version. 1.378 + // However the returned number is guaranteed to be either the correct 1.379 + // double, or the next-lower double. 1.380 + return false; 1.381 + } else { 1.382 + return true; 1.383 + } 1.384 +} 1.385 + 1.386 + 1.387 +// Returns 1.388 +// - -1 if buffer*10^exponent < diy_fp. 1.389 +// - 0 if buffer*10^exponent == diy_fp. 1.390 +// - +1 if buffer*10^exponent > diy_fp. 1.391 +// Preconditions: 1.392 +// buffer.length() + exponent <= kMaxDecimalPower + 1 1.393 +// buffer.length() + exponent > kMinDecimalPower 1.394 +// buffer.length() <= kMaxDecimalSignificantDigits 1.395 +static int CompareBufferWithDiyFp(Vector<const char> buffer, 1.396 + int exponent, 1.397 + DiyFp diy_fp) { 1.398 + ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1); 1.399 + ASSERT(buffer.length() + exponent > kMinDecimalPower); 1.400 + ASSERT(buffer.length() <= kMaxSignificantDecimalDigits); 1.401 + // Make sure that the Bignum will be able to hold all our numbers. 1.402 + // Our Bignum implementation has a separate field for exponents. Shifts will 1.403 + // consume at most one bigit (< 64 bits). 1.404 + // ln(10) == 3.3219... 1.405 + ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits); 1.406 + Bignum buffer_bignum; 1.407 + Bignum diy_fp_bignum; 1.408 + buffer_bignum.AssignDecimalString(buffer); 1.409 + diy_fp_bignum.AssignUInt64(diy_fp.f()); 1.410 + if (exponent >= 0) { 1.411 + buffer_bignum.MultiplyByPowerOfTen(exponent); 1.412 + } else { 1.413 + diy_fp_bignum.MultiplyByPowerOfTen(-exponent); 1.414 + } 1.415 + if (diy_fp.e() > 0) { 1.416 + diy_fp_bignum.ShiftLeft(diy_fp.e()); 1.417 + } else { 1.418 + buffer_bignum.ShiftLeft(-diy_fp.e()); 1.419 + } 1.420 + return Bignum::Compare(buffer_bignum, diy_fp_bignum); 1.421 +} 1.422 + 1.423 + 1.424 +// Returns true if the guess is the correct double. 1.425 +// Returns false, when guess is either correct or the next-lower double. 1.426 +static bool ComputeGuess(Vector<const char> trimmed, int exponent, 1.427 + double* guess) { 1.428 + if (trimmed.length() == 0) { 1.429 + *guess = 0.0; 1.430 + return true; 1.431 + } 1.432 + if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) { 1.433 + *guess = Double::Infinity(); 1.434 + return true; 1.435 + } 1.436 + if (exponent + trimmed.length() <= kMinDecimalPower) { 1.437 + *guess = 0.0; 1.438 + return true; 1.439 + } 1.440 + 1.441 + if (DoubleStrtod(trimmed, exponent, guess) || 1.442 + DiyFpStrtod(trimmed, exponent, guess)) { 1.443 + return true; 1.444 + } 1.445 + if (*guess == Double::Infinity()) { 1.446 + return true; 1.447 + } 1.448 + return false; 1.449 +} 1.450 + 1.451 +double Strtod(Vector<const char> buffer, int exponent) { 1.452 + char copy_buffer[kMaxSignificantDecimalDigits]; 1.453 + Vector<const char> trimmed; 1.454 + int updated_exponent; 1.455 + TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits, 1.456 + &trimmed, &updated_exponent); 1.457 + exponent = updated_exponent; 1.458 + 1.459 + double guess; 1.460 + bool is_correct = ComputeGuess(trimmed, exponent, &guess); 1.461 + if (is_correct) return guess; 1.462 + 1.463 + DiyFp upper_boundary = Double(guess).UpperBoundary(); 1.464 + int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary); 1.465 + if (comparison < 0) { 1.466 + return guess; 1.467 + } else if (comparison > 0) { 1.468 + return Double(guess).NextDouble(); 1.469 + } else if ((Double(guess).Significand() & 1) == 0) { 1.470 + // Round towards even. 1.471 + return guess; 1.472 + } else { 1.473 + return Double(guess).NextDouble(); 1.474 + } 1.475 +} 1.476 + 1.477 +float Strtof(Vector<const char> buffer, int exponent) { 1.478 + char copy_buffer[kMaxSignificantDecimalDigits]; 1.479 + Vector<const char> trimmed; 1.480 + int updated_exponent; 1.481 + TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits, 1.482 + &trimmed, &updated_exponent); 1.483 + exponent = updated_exponent; 1.484 + 1.485 + double double_guess; 1.486 + bool is_correct = ComputeGuess(trimmed, exponent, &double_guess); 1.487 + 1.488 + float float_guess = static_cast<float>(double_guess); 1.489 + if (float_guess == double_guess) { 1.490 + // This shortcut triggers for integer values. 1.491 + return float_guess; 1.492 + } 1.493 + 1.494 + // We must catch double-rounding. Say the double has been rounded up, and is 1.495 + // now a boundary of a float, and rounds up again. This is why we have to 1.496 + // look at previous too. 1.497 + // Example (in decimal numbers): 1.498 + // input: 12349 1.499 + // high-precision (4 digits): 1235 1.500 + // low-precision (3 digits): 1.501 + // when read from input: 123 1.502 + // when rounded from high precision: 124. 1.503 + // To do this we simply look at the neigbors of the correct result and see 1.504 + // if they would round to the same float. If the guess is not correct we have 1.505 + // to look at four values (since two different doubles could be the correct 1.506 + // double). 1.507 + 1.508 + double double_next = Double(double_guess).NextDouble(); 1.509 + double double_previous = Double(double_guess).PreviousDouble(); 1.510 + 1.511 + float f1 = static_cast<float>(double_previous); 1.512 +#if defined(DEBUG) 1.513 + float f2 = float_guess; 1.514 +#endif 1.515 + float f3 = static_cast<float>(double_next); 1.516 + float f4; 1.517 + if (is_correct) { 1.518 + f4 = f3; 1.519 + } else { 1.520 + double double_next2 = Double(double_next).NextDouble(); 1.521 + f4 = static_cast<float>(double_next2); 1.522 + } 1.523 + ASSERT(f1 <= f2 && f2 <= f3 && f3 <= f4); 1.524 + 1.525 + // If the guess doesn't lie near a single-precision boundary we can simply 1.526 + // return its float-value. 1.527 + if (f1 == f4) { 1.528 + return float_guess; 1.529 + } 1.530 + 1.531 + ASSERT((f1 != f2 && f2 == f3 && f3 == f4) || 1.532 + (f1 == f2 && f2 != f3 && f3 == f4) || 1.533 + (f1 == f2 && f2 == f3 && f3 != f4)); 1.534 + 1.535 + // guess and next are the two possible canditates (in the same way that 1.536 + // double_guess was the lower candidate for a double-precision guess). 1.537 + float guess = f1; 1.538 + float next = f4; 1.539 + DiyFp upper_boundary; 1.540 + if (guess == 0.0f) { 1.541 + float min_float = 1e-45f; 1.542 + upper_boundary = Double(static_cast<double>(min_float) / 2).AsDiyFp(); 1.543 + } else { 1.544 + upper_boundary = Single(guess).UpperBoundary(); 1.545 + } 1.546 + int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary); 1.547 + if (comparison < 0) { 1.548 + return guess; 1.549 + } else if (comparison > 0) { 1.550 + return next; 1.551 + } else if ((Single(guess).Significand() & 1) == 0) { 1.552 + // Round towards even. 1.553 + return guess; 1.554 + } else { 1.555 + return next; 1.556 + } 1.557 +} 1.558 + 1.559 +} // namespace double_conversion